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I. INTRODUCTION 

Innumerable papers and books have been written about inventory 

control. However, inventory control is one of the areas where a 

wide gap exists between theories and practices in spite of the abun­

dance of literature. Although they do not compose an exhaustive 

list of the reasons for the gap, the following seem to be part of it. 

First, the situation and the environment in which a company 

operates are unique. The way problems are handled has been estab­

lished during a long time period. Consequently, no models are general 

enough to fit for every company. 

Second, inventory models are generally too theoretical for a 

layman to understand. In addition, it is difficult to collect data 

for the variables and parameters defined in the models. 

Third, in most of the inventory models, it is assumed that 

anything happening in the inventory theory does not affect the rest 

of a company. However, this independence is far from reality. 

Fourth, practitioners consider inventory as a necessary evil. 

They are looking for a model which could given them a magic number 

to minimize the harm done by the evil. They seldom think that in­

ventory is an asset, like production facilities. 

Fifth, inventory models do not suggest the way to implement 

them. Also no idea is given about the costs associated with inqjlemen-

tation. 
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Although there is a lot of work yet to be done to narrow the 

wide gap, more attention and effort is currently given toward develop­

ing workable models and techiques. The communication and cooperation 

between theoreticians and practitioners seems to be increasing. 

In the midst of the struggle for narrowing the gap, Work-In-

Process inventory has been given the least consideration. There 

are two conceivable reasons for this. First, the dollar value of 

the WIP inventory is relatively small compared to raw materials and 

finished products. (McRoberts and Chung, 1975) Second, it is 

difficult to analyze the WIP inventory because of its complex relation 

with production scheduling. 

Recently the author had a chance to correspond with an experienced 

consultant in the field of production planning and control. He said, 

"No work has been done on an estimate of how much capital mi^t be 

removed from work-in-process in industries in this country. % 

own feeling is that most companies could reduce work-in-process 

levels 50y2 and find only good would result. Think of the capital 

this would free up! Technically there is little difficulty in doing 

this—the bi_g problem occurs because people's intuition tells them 

they need large cushions of work in the plant to run economically." 

(Plossl, 1975) 

The objective of this research is to shed some light on one 

fundamental question, "What is the optimum level of the WIP inventory 

for a production system?" It is very difficult to answer this ques­

tion because the optimum level depends on various attributes of the 
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system. Among these are the goals of production planning and control, 

which are often contradicting each other, production resources, 

financial resources, type of production, type of products, demand 

patterns, etc. Unless a set of optimization criteria is specified 

and a reasonably simple production system is hypothesized, answering 

the question seems to he an insurmountable job. Hence the approach 

taken in this research is to examine the WIP inventory of hypothesized 

production systems where the criterion of optimization is cost mini­

mization. The optimum level of the WIP inventory of the systems will 

be determined by an optimum solution which minimizes the cost con­

sidered. 

Two types of production system are studied in this research. 

Both types produce multiple parts with multiple machine centers. Each 

machine center is composed of one or multiple identical machines. 

The first type is a deterministic production system where various 

parameters of the system, such as demand rates and production rates, 

are known constants. Its production scheduling is simplified a great 

deal by assuming that each machine center produces incoming parts 

cyclically with integer number of cycles per year. The second type 

is a stochastic production system where its parameters are random 

variables having known probability distributions. Its production 

scheduling is simplified by assuming that each part is produced by a 

lot of which size is predetermined and the queue discipline at each 

machine center is first-come-first-served. 
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In the deterministic system the prime objective of the study-

is to derive a functional relationship between the average level of 

the WIP inventory and the production cycles of individual machine 

centers. 

The second objective is to find an optimum set of production 

cycles which minimize the production cost. Initially the production 

cost includes only setup cost and WIP inventory holding cost. As 

an extension of the study, the production capacity of each machine 

center, which is defined as the total available machine hours per 

year at each center, is taken into account in finding an optimum 

solution. To be more specific, the system incurs a fixed amount of 

cost for carrying each machine at each machine center. This cost is 

included in the production cost to be minimized. The capacity con­

sideration is introduced into the study in two different ways. One 

is to assume that the production capacity is non-deteriorating over 

time and there is no machine replacement. The other is to assume 

that the production capacity is deteriorating over time and machine 

replacement is allowed. In the latter case, technological improve­

ment is also considered. Although the decisions on capacity and 

machine replacement seem to be appropriate factors to be considered 

in inventory models, no attention has been given to these in the 

literature. Likewise, no work has been done for considering inventory 

in machine replacement models. One objective of the study is, accord­

ingly, to combine the decision on inventory and that on machine re­

placement effectively by the assumption of deteriorating capacity. 
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The machine replacement model is studied for the case where there 

is no "budget constraint and where there is some type of budget 

constraint. 

In the stochastic system the prime objective is to derive 

empirical functional relations between the mean and variance of the 

production lead time of each part, and the number of production orders 

to the system and the service rates of machine centers. Two hypothe­

sized production systems are simulated and the mean and variance of 

each part are observed at various levels of production orders and 

service rates. The data collected for mean and variance are re­

gressed and empirical functional relations are obtained. 

The second objective is to find an optimum trade-off point in 

terms of cost among the WIP inventory, the number of production 

orders and the service rates of machine centers. The WIP inventory 

of the system is divided into two groups; one of them is the WIP 

in production floor and the other is the WIP in the Finished Piece 

Parts Storage. There is a functional relationship between the 

former and the mean of the production lead time of each part. There 

is also a functional relationship between the latter and the mean and 

variance of the production lead time of each part. By identifying 

these relations and using the empirical relations obtained from the 

simulation and regression analysis, an optimum trade-off point is 

located for the hypothesized systems. 

The main body of this dissertation is Chapter III and Chapter IV. 
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Chapter III deals with the deterministic system and it begins with a 

method to calculate the WIP inventory "between two adjacent machine 

centers. Although several restrictive assumptions are made at the 

beginning, some of them are relaxed at later sections. An optimi­

zation scheme is discussed in Section B for the mathematical 

model developed in Section A. Section C and Section D deal with non-

deteriorating production capacity and machine replacement policy, 

respectively. 

Chapter IV is concerned with the stochastic system. In 

Section A the functional relations between the WIP inventory and pro­

duction lead time are discussed. Also a brief discussion on current 

queueing theory and its applicability to the stochastic system is 

presented. The last part of Section A is devoted to solving a 

single server queueing system with heterogeneous customers. The 

simulation study and regression analysis are presented in Section B. 
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II. LITERATURE REVIEW 

An early paper on WIP inventory by Simpson (1958) looked at 

manufacturing operations as chains of operations separated by 

inventories, ^y assuming that the system of manufacturing 

operations was the base-stock system, he solved for the optimum 

level of inventories which minimized a linear inventory holding 

cost. This paper also addressed the question of what points in 

the manufacturing operation should be inventory stocking points 

and what points should not. The demand for the final product 

was assumed to be a random variable having known mean and variance 

but unknown distribution. Clark and Scarf (i960) studied a 

system which is similar to Simpson's. They considered the problem 

of determining optimal purchasing quantities at individual inven­

tory stocking points. The cost to be minimized included pur­

chasing cost, linear holding cost, and linear shortage cost. 

By making several plausible assumptions, the optimum solution was 

obtained by techniques which had been used for the computation 

of optimal policies at a system having a single inventory stocking 

point. The demand for the final product was assumed to be a 

random variable having a known distribution function. 

Taha and Skeith (1970) developed a model for a single-product 

multistage production system with deterministic demand, where the 

product moves between the stages in a serial fashion. The 

production rate at each stage was not instantaneous and there 
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were time lags between stages. The decision variables, the batch 

size of the finished prod.nct, production quantity per run at 

each stage, and the shortage quantity of the finished product were 

determined by minimizing the total cost per rnit time which included 

linear holding cost, linear shortage cost, and fixed setup cost. 

One key assumption of the model was that the production quantity 

per run at stage i is an integer multiple of that at stage i+1. 

Crowston et al. (1973) considered the problem of economic 

lot size determination in multi-stage sissembly systems where each 

facility had many predecessors but only a single successor. 

Assumptions included constant continuous final product demand, 

instantaneous production, and an infinite planning horizon. Under 

the constraint that lot sizes remained time invariant, they proved 

that the optimal lot size at each facility was an integer multiple of 

that at the successor facility. They solved for optimum lot sizes by N 

stage dynamic programming with some appropriate computational refine­

ments. Schwarz and Schrage (1975) examined a system similar to the 

one considered by Crowston et al. Their objective was to select 

ordering policies which minimized (or nearly minimized) average 

system cost per unit time over an infinite planning horizon when the 

customer demand rate was constant. The system cost included fixed 

setup cost and linear holding cost. 

The above five papers dealt with a multi-stage production/ 

inventory system. However, none of them handled the problem of machine 
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scheduling properly. Some ignored machine scheduling and some made 

assumptions which virtually uncoupled the inventory and scheduling 

problems. 

WIP inventory has been studied extensively in a production 

line environment. The main interest of this line of study is to de­

termine optimum storage capacities at individual inventory stocking 

points. 

Koenigsberg (1959) reviewed the basic problems associated with 

the efficient operation of production and assembly lines, and evalu­

ated the effectiveness of internal storage. He discussed three 

basic approaches to the problem and made a three-way comparison 

among them. 

Anderson (1968) developed cost models for several types of 

production lines. Based on data from a production line simulation, 

regression equations were developed for estimating the average delay 

and average in-process inventory. By using the regression equations 

and estimates of the appropriate costs, the total cost for each model 

is expressed as a function of the number of stages and the storage 

capacity. Special consideration was given to establishing the minimum 

cost storage capacities during the transient or start-up phase of 

the production run. Shamma et al. (1973) did a type of study similar 

to Anderson's. 

Buzacott (1971) discussed the effects 6t the number, location 

and capacity of inventory bank on flow-line production system. Some 

quantitative results were presented. 
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A few papers treated the WIP inventory from a practical point 

of view. Wight (1970) discussed the way to control production 

lead time and WIP inventory. He considered "backlogs at individual 

machine centers the fundamental cause of longer lead time and high 

level of WIP inventory. He claimed that the only way to control lead 

time was to control "backlogs. He listed three causes of large "back­

logs and discussed how these causes should have "been handled. 

Plossl (1971) discussed the problem of determining proper 

level of various types of inventory. He classified inventory by its 

function and discussed the roles, benefits, problems, and relations 

with other factors and parameters of a production system for each class. 

Plossl and Wight (1973) reviewed and examined various aspects of 

production planning and control. The discussion covered existing 

techniques, associated problems, proper ways to handle the problems 

and principles for each aspect with particular emphasis on lead time 

control. 

Bell (1973) criticized the implicit assumptions underlying the 

EOQ-ROP inventory model. He put inventory in a new perspective and 

discussed the relation between inventory and the remaining sector of 

a conçany, and the relation between inventory and customers. 

It is commonly assumed in inventory theory that procurement 

lead time is constant. However, this assumption is not representa­

tive of most situations while variable lead time presents some in­

herent theoretical difficulties. Bramson (1962) did a survey of the 

literature on this subject. He presented different approaches to the 
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problem for each class of inventory model. Clark and Rowe (I96O) 

came up with an approximate relation among order quantity, reorder 

point and the fraction of stock out for a general lead time demand. 

Ekey et al. (1961) calculated the probability of a shortage during 

reorder cycle in terms of lead time distribution and demand distribu­

tion. 

Gross and Soriano (1969) examined the effect of reducing lead time 

on inventory levels via simulating a military overseas supply system. 

They observed the effect for each different combination of lead time 

distribution and demand distribution. 

Silver (1970) suggested a modified formula for calculating customer 

service which was measured by the fraction of the time during which 

demand is satisfied without backorders. Numerical results were provided. 

Burgin (1972) developed an exact expression for protection and 

potential lost sales for a continuous review inventory model in which 

the demand is normally distributed and the lead time gamma distributed. 

Danish (1972) studied the problem of calculating the reorder 

point for a continuous review inventory model. The reorder point 

was calculated for each different combination of lead time distribu­

tion and demand distribution. 

Since the stochastic production system of Chapter IV is a 

queueing network, the literature of queueing theory was reviewed. The 

two papers by Jackson (1957 and 1963) discussed the stationary 

solution of jobshop-like queueing system. Ancker and Safari an (1961) 

and Kotiah and Slater (1973) studied a queueing system with heterogeneous 
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customers. Rosenshine (1975) and Disney (1975) reviewed and summarized 

the theory of queue. All these papers written on queueing theory 

are discussed in greater detail in later sections. 

Shore (1975) considered machine replacement decisions under 

capital budgeting constraints. His model was an extension of 

Terborgh's model (I9k9). He developed a formula to compute the net 

benefit to be realized by replacement. Using this formula, a zero-

one integer programming model was developed in which the objective 

function was the total net benefit and constraints were yearly budget. 

The formula of the net benefit was a very complicated one. However, 

it is not necessary to use the formula to compute the net benefit 

since the same result can be acquired from the adverse minimum de­

fined by Terborgh. 
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III. DETERMINISTIC CASE 

A. Development of Work-In-Process Inventory Calculation 

1. Introduction 

Section A deals with a method which makes it possible to calculate 

WIP inventory holding cost systematically. Although many restrictive 

assumptions are made at the beginning, some of them are relaxed in the 

later part of this section. The method is the corner stone of the 

mathematical models to be developed in later sections, which in turn 

will be the basis for determining optimum production and capacity 

decisions. 

While the main purpose of developing the method is to calculate 

WIP inventory holding cost in a pretty general case where there are 

N parts and M machine centers, the case of 1 part and M machine 

centers is dealt with at the beginning for the sake of simplicity. 

The part is processed through a series of M machine centers. 

Figure 3.1 depicts the production system of 1 part and M machine 

centers. 

Each machine center is composed of several identical machines. 

They are identical in terms of production speed for a given part, 

setup cost for a given part, available machine hours per year, 

maintenance cost, etc. The production capacity of a given machine 

center is measured by the total available machine hours per year. 
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raw 
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machine 
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Figure 3.1. Production system of 1 part and M machine centers 

Before proceeding, the following assumptions and definition of 

symbols are made. 

Assumptions : 

(1) Each machine center produces the part cyclically. 

(2) Each machine center has one unique number of cycles per 
year. The number of cycles per year is integer. 

(3) The maximum number of cycles a machine center can have is given. 

w The demand rate of the part is a known constant. 

(5) The 
and 

production rate at each machine center is a known constant 
it is bigger than the known demand rate. 

(6) The part is infinitely divisible. 

(7) The processed parts at one machine center will be fed into a 
next machine center continuously. 

(8) The moving time of processed parts from each machine center 
to a next one is a known constant. 
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(9) Back order is not allowed. So there is no material shortage 
at each machine center. 

(10) There are no defectives. 

(11) Back tracking is not allowed. 

(12) The setup cost per cycle at each machine center is a known 
constant. 

(13) The dollar value per unit of the part which has been 
processed at a machine center is a known constant. 

(lit) The total available machine hours per year of each machine 
center is infinite. 

(15) After the completion of the operation at machine center M, 
the part will be delivered to a shipping area. The rate of 
shipment is continuous and equal to the known demand rate. 

(16) At a given machine center the part cannot he worked on by 
more than one machine simultaneously. 

(17) No interruption is allowed during a production period of a 
part. 

Assumption 2 regarding the number of cycles per year is made for 

two reasons. The first one is managerial convenience. The second 

is the fact that the integer assumption makes it possible to find 

an optimum solution by using dynamic programming and branch and bound 

techniques. 

The amount of inventory in transfer from one machine center to 

another is constant because of assumption 8. So the portion of total 

WIP inventory holding cost due to this amount is constant. Since a 

constant term does not affect an optimum decision, it is not necessary 

to consider the amount in calculating the WIP inventory holding cost 

which is relevant to an optimum decision. Consequently, this amount 

will be ignored in the development of WIP inventory calculation. 
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The dollar value per unit mentioned in assumption 13 needs to be 

refined. Generally it is very difficult to measure the dollar value 

per unit of a part which is in an intermediate production stage. It 

is the sum of all relevant costs associated with the part up to that 

particular production stage. Although it may he relatively easy to 

keep track of the direct labor costs and material costs involved, 

finding the portion of the total overhead cost of a manufacturing 

company associated with that particular part at a certain production 

stage is certainly a complex task. However, the assumption is made 

for the development of an easy and useful way of calculating WIP 

inventory. Note that the dollar value includes direct labor costs, 

material costs and all other pertinent costs which occur due to the 

production of the particular part up to a particular production stage. 

The assumptions 7» 11, and will be relaxed at later 

sections. 

Definition of symbols: 

D; Demand rate (units/yr) 

Number of cycles/yr at machine center i (i = 1,2,..., M) 

N^; The maximum number of cycles per year at machine center i 

v. :  $/unit of the part which has been processed at machine 
center i 

S.: Setup cost/cycle at machine center i 

p^: Production rate at machine center i 

I: Yearly inventory carrying charge ($/$-year) 
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Consider machine center i which will produce D/N^ units per 

each cycle. Each completed part will be fed into machine center 

i + 1 continuously. The problem is to find the WIP inventory be­

tween machine centers i and i + 1. The amount of the WIP inventory 

in transfer, referred to as pipe line inventory, is constant due to 

assumption 8. Ignoring this pipe line inventory is equivalent to 

ignoring the moving time. The entire system could be described as if 

the parts are moved instantaneously from one machine center to another 

by assumption 8. Consequently, it should be noted that the WIP in­

ventory between machine centers i and i + 1 represents only the 

amount which is not involved in transfer. 

In finding the WIP inventory between machine center i and 

i + 1, the following diagram is found to be very useful. It is 

called cumulative production-demand diagram. This diagram is shown 

in Figure 3.2. 

In order to simplify the situation, one additional assumption is 

made, i.e., the production rate at machine center i and the rate at 

machine center i + 1 are the same. For this simple situation. 

Figure 3-3 shows the cumulative production-demand diagram of machine 

center i and that of machine center i + 1. The assumption of 

equal production rates at machine centers i and i + 1 will be 

relaxed later. 

In Figure 3.3, t^ is the moving time from machine center i 

to machine center i + 1. The saw tooth line AB represents the actual 

cumulative production at machine center i. The saw tooth line CD 
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Figure 3.2. Cumulative production-demand diagram 
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Figure 3.3- Cumulative production-demand diagrams of 
machine centers i and i+1 
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represents the cumulation of the parts which have arrived at machine 

center i + 1. AB is called the actual production line of machine 

center i and CD is called the available production line at machine 

center i + 1. EF is the actual production line of machine center 

i + 1. 

The amount of inventory tied up with the transit from machine 

center i to machine i + 1 in terms of unit-years is the area 

between AB and CD. Since the area is a constant for a given t. 

and also independent of N^, it will not be considered for the WIP 

inventory calculation between the two machine centers as stated before. 

AH is the time lag between the very first production starting 

points of machine centers i and i + 1. represents the be­

ginning inventory at machine center i + 1. It is assumed that this 

beginning inventory could be acquired by some means such as pur­

chasing or subcontracting. With the beginning inventory 

WIP inventory between machine centers i and i + 1 in terms of 

unit-year is the area between the two saw tooth lines CD and GF plus 

the shaded areas, EHCG. Since the time horizon is infinite, the 

area EHCG can be ignored in calculating the average WIP inventory per 

year. Accordingly the WIP inventory between the two machine centers 

is the area between CD, which is the available production line at 

machine center i + 1, and GF which is the actual production line of 

machine center i + 1 from which the very beginning section, EG, 

has been cut off. It should be noted that when the time horizon is 

finite, ignoring EHCG may not be justified. 
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In Figure 3.3 it is possible that machine center i + 1 starts 

its production at point H "but with beginning inventory much less 

than The dotted line is the realization of EF by upward 
t 

shifting. In this case the beginning inventory required is By 

the upward shift, WIP inventory between machine centers i and 

i + 1 has been reduced substantially. Before the shift, WIP is 

represented by the area between GF and CD. After the shift, it is 

reduced to the area between JK and CD. The WIP inventory between 

machine centers 1 and i + 1 can be reduced by this manner as 

long as CD covers GF completely from above. 

Figure 3.U is the reproduction of Figure 3.3 except that the 

initial production starting point of machine center i + 1 occurs 

much later compared with Figure 3.3. 

is the beginning inventory at machine center i + 1. For 

this case the WIP is the area between the saw tooth lines GD and EF 

while ignoring the area LCGE. 

It is possible that machine center ï + 1 starts its production 

at point H but with zero beginning inventory. The dotted line HI 

is the realization of EE by upward shifting. By this upward shift 

the WIP inventory is reduced to the area between GD and HI. It is 

also possible to reduce the WIP inventory to the area between GD 

and JK by taking away the incoming parts from machine center i as 
I I 

much as For example ; can be sold out. The WIP inventory 

can be reduced by this manner as long as the saw tooth line GD covers 

EF completely from above. 



www.manaraa.com

22 

r 

// 

Time 

Figure 3.^. Cumulative production-demand diagrams of 
machine centers i and i+1 
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From Figures 3.3 and 3-U it is obvious that the WIP inventory 

between machine centers i and i + 1 is the area between the two 

saw tooth lines, one of which is the available production line at 

machine center i + 1 and the other is the actual production line 

of machine center i + 1. It seems logical to assume that the manager 

of this production system will try to reduce the area between the two 

saw tooth lines as much as possible by acquiring a minimum beginning 

inventory or taking away a maximum amount of incoming parts from 

machine center i depending on the relative locations of A and H. 

The actual quantities of those minimum and maximum also depend on 

the locations of A and H. 

Since the planning horizon is assumed to be infinite, the 

beginning minimum inventory to be acquired or the maximum amount of 

incoming parts to be set aside will have negligible effect on the 

average yearly WIP inventory between the two machine centers. The 

problem is reduced to calculating the area between the two saw tooth 

lines where the area has been reduced as much as possible by acquiring 

a minimum beginning inventory or taking away a maximum amount of 

incoming parts from machine center i. 

Figure 3-5 shows the two saw tooth lines when the area between 

them has been reduced as much as possible. In Figure 3.5 the produc­

tion inventory of machine center i is defined to be the area surround­

ed by the available production line and the demand line of machine 

center i. The installation inventory of machine center i is defined 

to be the area surrounded by the demand line of machine center i and 

that of machine center i + 1. 
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Production inventory 
of machine center i 

Available pro­
duction line at 
machine center i+1 

I I 

Installation inventory 
of machine center i 

Actual production line of 
machine center i+1 

•H 

Demand line of machine center i 

Demand line of machine center i+1 

Time 

Figure 3.5. The production inventory and installation inventory of machine center i 
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The WIP inventory between machine center i and i + 1 is the 

area surrounded by the available production line and the actual 

production line. Figure 3.6 shows this inventory. 

Note that the production inventory, the installation inventory 

and the WIP inventory in Figures 3.5 and 3.6 are all represented in 

terms of unit-years. 

It is obvious from Figures 3.5 and 3.6 that the WIP inventory 

between machine centers i and i + 1 is the sum of the production 

inventory and installation inventory of machine center i less the 

production inventory of machine center i + 1. In an equation form, 

(WIP inventory between machine centers i and i + l) 

= (production inventory of machine center i) 

+ (installation inventory of machine center i) 

- (production inventory of machine center i + 1) . (3.1) 

If the production inventory and the installation inventory of 

each machine center could be expressed in a simple equation in terms 

of known constants, it would be possible to calculate the amount of 

the WIP inventory between each pair of machine centers. Equation 3.1 

plays the key role in calculating the WIP inventory in later sections. 

2. The -production inventory of machine center i 

Consider the production inventory of machine center i during 

one cycle represented by the triangle ABC in Figure 3.7. In 

Figure 3.7, A BCH and A EFG are the same size and A ABH and A AEG 

are the same size. Consequently, A ABC and A AEF are the same size. 
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Figure 3.6. WIP inventory between machine center i and machine center i+1 
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B C 

d/N. units 

I/N^ yrs 

Figure 3.7. The production inventory of machine center i during 
one cycle 

Since EG = ̂  (l - , the area of A ABC or A AEF = ^ . ̂-(l-§ 
i 1 ^ ^i r 

The production inventory during one year is composed of of 

A ABC's. So the production inventory of machine center i per year 

can "be expressed as 

l-r-l:- (1 -#-) = • 
1 1 i 11 

3. The installation inventory of machine center i 

Consider the installation inventory of machine center i per 

year in Figure 3-5. Its quantity in terms of unit-years is simply 

the vertical distance between the demand line of machine center i 

and that of machine center i + 1. Depending on the location of H 

in Figures 3-3 and 3.^ the distance can be changed. This distance 

needs not to be bigger than the distance between one apex of the 
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actual production line of machine center i + 1 and the demand line . 

of machine center i + 1 no matter vhere the point H is located. 

This distance is the maximum distance and is equal to 

)(l - ̂  ). For some locations of H the distance between the 
"±+1 i+1 
two demand lines can be much smaller than the maximum distance and 

the distance cannot be smaller than this for any circumstance. This 

distance is called minimum distance and its actual quantity will be 

calculated later. 

The vertical distance between the two demand lines, which is the 

installation inventory of machine center i per year, accordingly, 

changes within the range of the maximum and minimum distances depend­

ing on the location of H in Figures 3.3 and 3.4. 

While the determination of the actual location of H is a 

managerial decision, the following assun^tion is made in the disserta­

tion; the vertical distance between the two demand lines is the 

ari thematic mean of the maximum distance and the minimum distance. 

Hence, the installation inventory of machine center i per year is 

^maximum distance + minimum distance) where the maximum distance 

has been already obtained. The rest of this section deals with 

finding the minimum distance. 

Figure 3.8 shows the available production line at machine 

cen t e r  i + 1  a n d  t h e  a c t u a l  p r o d u c t i o n  l i n e  o f  m a c h i n e  c e n t e r  i + 1  

where the two demand lines of machine centers i and i+1 coin­

cide. Also one production starting point of the available production 

line meets with one of the actual production line at point A as well 
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Available production line 
at machine center i+1 

Actual production line of 
machine center i+1 

Figure 3.8. Available production line at and actual production line of 
machine center i+1 
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as at point B. The portion of the available production line between 

A and B is composed of a cycles and the portion of the actual 

production line between A and B is conçosed of 6 cycles, where 

^i+1 6 
^ — and a and B are relatively prime integers. 

Consider the line segment KE. It is the first horizontal 

portion of the available production line at machine center i + 1. 

Unless it is level with CF, which is the first horizontal portion 

of the actual production line of machine center i + 1, there always 

exists a segment of the actual production line of machine center 

i + 1 in the shaded region in Figure 3.8. The leveling is realized 

at ath horizontal portion of the available production line and at 

6th horizontal portion of the actual production line. 

a^ is the vertical distance between KE and the second hori­

zontal portion of the actual production line which passes through 

the shaded region. Consider a similar shaded region just above the 

second horizontal portion of the available production line. There 

will be another segment of the actual production line in that region. 

is the vertical distance obtained in similar fashion. Since 

the ath horizontal portion of the available production line is level 

with one of the horizontal portions of the actual production line 

for the first time, the quantities a^, a^, ..., a^ can be obtained. 

Note that a^ is always zero. 

Suppose that a is the maximum of a, , a^, ..., a . If the 
^ max 1 2 a 

whole available production line is moved parallel by an amount a , 
max 

the available production line will just cover the actual production 
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line. In no circumstance will a complete coverage be realized by a 

vertical movement less than a . Suppose such movement has been 

realized. Then the vertical distance between the two demand lines 

will be a . (l - ̂  ). Consequently the minimum distance to be 
max ^1+1 

found is a • (l - i )• 
max ^i+i 

Proposition 1: a in Figure 3.8 equals )(l - r) where 
== max Ni+i a 

N ^ 
——«= — and a and B are relatively prime integers. 
JJl^ P 

Proof: Let H. = z— and H... = z • H. and H.are the pro-
1 N. 1+1 N.., 1 1+1 

1 1+1 

duction quantities per cycle at machine center 1 and i + 1 

respectively. It is always possible to express and in 

terms of o and B such that = t . g and = t . a for some 

real number t. Also 

° = *1 - "l+l - ®i " Bi+l' 

^ — ̂ 2 ^2 * ^i+1 " ̂ ^ ̂ i+1* •••* 

° - Vl = \-l ' ̂i+1 - (» - 1) . H. < 

a = A . H..T - a . H. = 0 where 
a  a  1 + 1  1  1 2 a  

e {1,2,...,6} and £,<£_<...<£ _<A = 'pj 1 — 2 — — a-1 — a 
= 6 

By substituting t . 8 for and t . a for 
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% 
0  ̂  — ig .a — 2.3<a, ... , 

a 
0 <_ ^  « a - (& - l) .B<ot, 

a 
— = B . o - a. 6 = 0. 

^ S ®d 
Since o and 6 are relatively prime integers, each of ̂  ..., — 

will take one unique value among 0, 1, 2, ..., a-1. Consequently 

-fSS- = a - 1 and = t(a - 1) = - i) 

= |— (1-i). WD. 

Since a = T (l - the minimum distance is 
max i+i ° 

Hence, the installation inventory of machine center i per year is 

^maximum distance + minimum distance) 

= I 

4. The WIP inventory of 1 part and M machine centers and its 
holding cost 

From Section 2 the production inventory of machine center i 

per year is ^ ^ . (l - ̂ ). Aico -from Section 3, the installation 

inventory of machine center i per year is 4 )(l - i )(2 - —). 
i+1 i+1 ° 
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Now, it is possible to calculate the WIP inventory between machine 

centers i and i + 1 per year from equation 1 in Section 1. 

(WIP inventory between machine centers i and i + 1 per year) 

= I. I-. (1 - - f-)(2 - i) -
1 1 1+1 1+1 

ID , D X 

Since the dollar value of the part between machine centers i 

and i + 1 is assumed to be from assumption 13, the yearly 

inventory holding cost for the above WIP inventory is (WIP inventory 

between machine center i and i + 1 per year) . . I. 

In calculating the total WIP inventory per year associated with 

M machine centers, the following symbols are defined. 

WIP. : The WIP inventory between machine centers i and i + 1 
per year. 

PIY^: The production inventory of machine center i per year. 

IIY^: The installation inventory of machine center i per year. 

N g 
a.; —— where a. and 3. are relatively prime 
1 ^ ̂ ^i ^ ^ +1 

integers 

The total WIP inventory per year between machine centers 1 

and M is the sum of the WIP inventories between each pair of 

machine centers, i.e. , 1 and 2, 2 and 3, ...» M-1 and M. Since the 

last machine center, M, produces cyclically and the demand rate at 

the shipping area is a straight line, there is some WIP inventory be­

tween machine center M and the shipping area. The amount of this 
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inventory is PIY^. The total WIP inventory of this production 

system is, then the inventory between machine centers 1 and M 

plus PIY^. 

(Total WIP inventory per year) = (PIY^ + - PIYg) 

+(PIY2 + IIYg - PIYg) + . . . 

cost for the above total WIP inventory can be calculated. 

(Total holding cost per year) = (PIY^ + IIY^ - PIY^) . . I 

+ (PIYg + IIYg - PIYg) . Vg . I + . . . 

M-1 
= PIY + Z IIY. 

1 4=1 1 
(3.2) 

Since V^, V are known, the yearly inventory holding 
M 

+ (^^Vl + ̂ ^Vl - Vl ' I + ' Vw . I 

M 
= PIY, . V, . I + Z PIY.(V. - V. J . I 

1 1 ._r, 1 1 1-1 

M-1 
+ Z IIY. V. . I 

i 
(3.3) 

By substituting ^ ~ p~^ for PIY^ and 
i i 

^ . (^ )(l - ̂  )(2 - ̂ ) for IIY. in equations 2 and 3 
^ i+1 i+1 i ^ 

(Total WIP inventory per year) ~ ̂  • §~ • ~ p") 

(3.4) 
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(Total holding cost per year) = Z ^ ^ (l - V. . I 
i=l 2 ^i ^ 

M-1 
+ S I . (f-)(l - i )(1 - ;-) . V . I (3.5) 
i=l i+1 i+1 i ^ 

Usually it is true that V, < V < ... < V„ because the unit value 
12 3 M 

of the part will increase by some positive amount every time it 

passes through a machine center. However, equation 3-5 is still valid 

for the case where there is no such restriction as above on the rela­

tionships among V^, V^, ...» V^. 

5. The relaxation of the assumption that = P^^^ 

In Section 1 it is assumed that the production rate of machine 

center i is the same as that of machine center i+1. Because of 

this assumption, P = P_ = ... = P in equations 3.^ and 3.5 • If 
1 ^ M 

this assumption is relaxed, a different result occurs. If the produc­

tion rates of all M machine centers are such that P^ —^2 —** * * ' — 

equations 3.4 snd 3-5 are still valid. To show the reason for this, a 

similar picture to Figure 3.8 is drawn in Figure 3.9. The difference 

between Figure 3.8 and Figure 3.9 is that P^ > and the available 

production line at machine center i+1 has been moved along the line 

AK in Figure 3.8 by an amount equal its total vertical movement, a^^^. 

It is obvious from Figure 3.9 that the available production line 

at machine center i+1 can cover the actual production line by 

the minimum distance, a . (l - ̂  ), when P. > P. .. 
ttiQA i*^X ^ ̂  
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Figure 3.9 . Available production line at and actual production line of 
machine center i+1 when > ^i+l 
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If P. < P.,,, the minimum distance, a . (l - ̂  ), is not 
1 1+1 max 

sufficient for complete coverage and this is shown in Figure 3.10. 

To realize a complete coverage the available production line at 

machine center i + 1 is moved horizontally to the left as much sis 

CG in Figure 3.10. Once this movement has been realized, the minimum 

distance between the demand line of machine center i and that of 

i + 1 will be bigger than a . (l - % ) by CG . D. From 
max i+1 

Figure 3.10, CG = )(— )(^ - ̂  ). Hence the minimum distance 
i+1 * i i i+1 

will be a . (l - i ) + (i ) (p p ) • 
max ^i+i «i+1 ^i+i 

In Figure 3.10, the installation inventory of machine center i 

will be ^ (maximum distance + minimum distance) = )(l - % ) 
i+1 i+1 

To summarize, the installation inventory of machine center i can 

be calculated as follows: 
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Actual production line 
of machine center i+1 

Available production line 
at machine center i+1 •H 
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Figure 3.10. Available production line at and actual production line of 
machine center i+1 when 
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P. and Maximum 

Distance Minimum Distance 

The Installation 
Inventory of Machine 
Center i Per Year 

FA i+1 
) ^Max + Min) 

^Max + Min) 

•) 

To accommodate the above two cases in one equation form a function 

ô(.) is defined as follows: 

5(x) = 0 when x j< 0 

5(x) = 1 when x > 0. 

By utilizing 6(.)» the installation inventory of machine center i 

IS 

i fc'" - k"" 

•îfc'iV'îT-fc' -V' 

Equations 3.U and 3-5 can he modified by substituting 

2 • nT • I (|—)(i - I—)(2 -
1 i+1 ^i+1 °i 
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ï. - ̂ i' 

for IIY^ in equations 3.2 and 3.3 as follows. 

(Total WIP inventory per year) = ̂  . ̂  . (l - ̂ ) 
d 1*1 

• S 'i • fc"' - fcr'" - k' 

^î- <577»^"^-^'•''Vi-V <3-«' 
i+1 i i i+1 

(Total holding cost per year) = 2 ^ ^ . (l - ̂ ) . V. . I 
i=l ̂  "i i ^ 

1=1 

(3.7) 
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6 .  The relaxation of assumption 7 

In previous sections it is assumed that the part being produced 

is infinitely divisible, such as liquid or powder, and once it has 

passed through a machine center it is ready to be sent to a subse­

quent machine center. These assumptions are justified when demand 

is very large, unit processing time is very small and each individual 

unit can be sent to a next operation as soon as its present operation, 

is finished. However, it is possible that a significant amount of 

time is required to finish each operation for each unit. Also it 

is a normal practice to move parts in containers such as tote boxes 

or skids. In this situation each individual unit is not ready to be 

moved to a next machine center until a certain number of units have 

filled each container. 

The objective of this section is to modify equations 3.6 and 

3.7 in such a way that the effects of using containers on the WIP 

inventory and its holding cost can be taken into consideration. 

Consider Figure 3.11 in which the total units produced for 

one cycle at machine center i are moved with 3 containers. Attention 

should be given to the difference between the amount produced during 

one cycle and the amount filled in one container. The former is 

called one lot and the latter is called one box. One lot is some­

times called Economic Order Quantity, Economic Production Quantity 

or Economic Batch Size in the literature. 

In Figure 3.11, the triangular ACE represents one box. No 

single box unit can be used or moved to another machine center until 



www.manaraa.com

I 
I r-
1 
6 

Available production line 

2D/N^ .. 

5D/3N^ .-

4D/3Nj^ .. 

D/N, .. 

2D/3Nj^ 

D/3Nj • 

/ Pseudo available 
7* ^ production line 

- Demand line 

Pseudo demand line 

D 1 1 n 
Hi " 3 " Pi " 

to 

Time 

Figure 3.11. Available and pseudo available production lines at 
machine center i+1 
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time AE has elapsed and an entire box quantity, , has been 

processed. Because of this restriction, the available production 

line in Figure 3.11 represents the availability of incoming material 

flow to machine center i + 1. Accordingly the available production 

line is the one which should cover completely the actual production 

line of machine center i + 1. 

When ^ ̂i+i * complete coverage of the actual production 

line of machine center i + 1 by the available production line at 

machine center i + 1 is equivalent to the complete coverage by the 

pseudo available production line. This is due to the vertexes E, 

G, and H in Figure 3.11. The logical way to handle this situation 

is to let the pseudo available production line take the role of the 

available production line in the development of the WIP inventory 

calculation in previous sections. Since the vertical distance be­

tween the demand line and the pseudo demand line is ~ ̂ ^ . D, 
i ^ i 

the only necessary modification for this situation is to shift 

both the maximum distance and the tm'n-iîtniTn distance upwards by 

^ ̂ ^ . D. Then the installation inventory of machine center i 
i i 

per year will be ^ )(l - ̂  )(2 - ~) + ̂  • T • è • 
i+1 i+1 "i :5 r 

The production inventory of machine i per year is the same as before. 

A complication arises when P^ < P^^^. In this situation the 

pseudo available production line of machine center i cb-u no longer 

take the role of the available production line as before. This is 

shown in Figure 3.12. 
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Figure 3.12. Pseudo available production line at machine center i+1 
and actual production line of machine center i+1 when P^ < P^^^ 
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In Figure 3.12 the double dotted line represents the 

original position of the pseudo available production line at machine 

center i + 1 after its upward movement by the vertical distance 

This line is similar to the solid line in Figure 3.10. The 

single dotted line (-.-) represents the position after the double 

dotted line has been moved horizontally to the left by the distance 

CG. However, the horizontal movement CG is more than necessary by 

EF and this is the reason why the pseudo available production line 

cannot play the role of the available production line as before. 

The maximum distance for the calculation of installation in­

ventory of machine center i for this situation is )(l - ̂  ) 
^i+1 i+1 

+ ^ . D). But the minimum distance is less than 
i ^ 1 

w • -

in Figure 3.12 due to the potential right movement of the pseudo 

production line of machine center i by EF. The potential decrement 

is EF . D. Since EH = (0 )(^) - (l . ̂  and 
i+1 i ^i 

EF = HB . (5-- 5 ), EF = {(2 )(^) - a j)) . (j-- I ). 
i i+1 i+1 i i i i+1 

Consequently the correct minimum distance will be 

"max ^ t • 3 • ̂  
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The number,"1", in the term (l . — . —) is kept to emphasize 
i ^ 

the multiplier significance. In Figure 3.12, the distance 

) . (—) is about 1.6 times as big as the distance (~ .^). The 
'*±+1 "i i ^ 
number, 1, is the integer part of 1.6. 

It is possible to develop a general equation form of the minimum 

distance for a case where the number of containers used at machine 

center i is Let be the integer part of 

D 1. 

N. g. 
where and and gare relatively prime integers. 

n n 
When ) is integer itself, let K. be (t ) - 1. Then the 

^i+1 ^i+1 

minimum distance will be 
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The development in this section can be summarized as follows.^ 

P. and 
1 

i+1 

Maximum 

Distance 

)(i-?—) 
^i+1 

Minimum Distance 

i+1 ' f c ' " '  

The Installation 
Inventory of Machine 
Center i Per Year 

^ (Max + Mxn) 

) ê—)(i-S—)(!-—) 
^i+l i+1 «i 

2 (Max + Min) 

By using the 6(.) in Section 5» the installation inventory 

of machine center i is 

i (#—)(! - 2—)(2 - &-) 4. 2_ D L 
2 "i+l Pifl "i "i "i & 

4 
1 ®i+l * ^^^i+1 ~ ̂ i^ 
The development is only valid when n. >_ ; >, r . 

1 

Since P. and P.^^ are much larger than D and — ̂ i+i' this 

condition will be satisfied in most cases. Refer to Appendix A for 
the condition. 
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It is vorthwhile to observe the installation inventory of machine 

center i as n^ changes. 

(Case A) n. + ». Then K. = . 
1 1 

Installation Inventory = ̂  ^ )(l - ̂  )(2 - —) 
^i+1 i+1 °i 

D D I  

Here 

3.., . N. = a. . N.^_. This result is consistent 1+1 1 1 1+1 

with that of Section 5» The reason is the fact that as 

the pseudo available production line will eventually coincide with 

the available production line and the situation will be reduced to 

the one in Section $. Accordingly, assumption 7 is equivalent to 

setting h^ ->.00. 

(Case B) = 1. Then = 0 since ^ 
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Installation Inventory = ̂  )(l - ̂  )(2 - ~) + ~ . 
i+1 i+1 i i i 

(Case C) < 8^^^. Then = 0. 

Installation Inventory = ̂  )(l - § )(2 - ^ ̂  ̂  
^i+1 i+1 i i i i 

(Case D) n. = In this case the number of containers is the same 
1 

as the number of total units of one lot. This means that individual 

units can he sent to a subsequent machine center as soon as its pres­

ent operation is completed 

i) when ^ ̂i+i* then 

Installation Inventory = ̂  (^ )(l - ̂  )(2 - ^ 
i+1 M+1 i i 

ii) when < P^^^, it is difficult to calculate the installa­

tion inventory accurately. Under the assumption of large D, 

Installation Inventory - ̂  )(1 - ){2 - —) + — 
2 "i+l Pi-fl "i Pi 

n. 
(Case E) When -g k. where k. is a positive integer, then 

i+1 ^ 1 

K. - k. - 1. 
1 1 
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Installation Inventory = ̂  )(l - ̂  )(2 -
i+1 ^i+1 i 

N,. k. . g.+2 1 

^ 1 D D 1 

Among the above 5 cases considered. Case E seems to be the most 

realistic one. All subsequent reference to the installation inven­

tory of machine center i will take the form of Case E. 

Equations 3.6 and 3.7 can be modified by substituting 

1 • S- • (1 - §-) for PIÏ and | (5 )(1 - | )(2 - J-) 
i i ^ "i+1 i+1 i 

^ k - k r , - k - k  

for IIY^ in equations 3.2 and 3.3 with one minor adjustment. The 

WIP inventory between machine center M and the shipping area is 

PIY„ in equations 3.2 and 3.3. When the number of containers used 
M 
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at machine center M is n^, the quantity of this inventory will 

be PIY + ̂  ̂  Equations 3.2 and 3.3 are only valid for the 
" M 

case vhen = ®. By taking into consideration this adjustment, 

equations 3.6 and 3.7 are modified as follows: 

D D I  
(Total WIP inventory per year) - PIY + E IIY. + — . — 

^ i=l 1 M M M 

^ D D_ 1^ 
*]c, • a.+i ' a. • Pi 

(3.8) 

M 
(Total holding cost per year) = PIY . V . I + E PIY.(V, - V ) . I 

1 1 i= 2 ^ ^ 
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B. Optimum Cycles of Machine Centers without Capacity Constraints 

1. Introduction 

Section B deals with finding the optimum number of cycles per 

year for each machine center under the assumption that the available 

machine capacity is infinite. The quantity to be minimized is the 

total cost which is the setup cost plus inventory holding cost. In 

expressing the inventory holding cost, equation 3.9 is used. The 

first case to be dealt with is the one where there are M machine 

centers and 1 part. No backtracking is allowed in the operation 

sequence of the part, and an optimum solution is found by using the 

Dynamic Programming. The second case to be dealt with is a general 

case where there are M machine centers and N parts. Backtracking 

is allowed in the operation sequence of the part. Once the number 

of different parts is bigger than 1 or backtracking is allowed, 

the Dynamic Programming approach cannot be applied in general. The 

reason for this will be explained in Section B-2. In finding an 

optimum solution the Branch and Bound technique is used. A simple 

example is presented at the end of Section B-3, in which an optimal 

solution is obtained by using the Branch and Bound technique. 

2. 1 part and M machine centers without backtracking 

The total cost of the production system is the total setup cost 

plus the total inventory holding cost. The setup cost of machine 
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M 
i per year is S. . N. and its total is Z S. . N.. 

11 i=l 1 1 

By combining this with equation 3.9» the total cost can be expressed 

center 

as follows: 
I.V 

(The total production cost per year) = + • -g ^ ̂ ^1 - —) 

M IV D 

' A ''A ̂  2N-

2 D 1 

*1-1 *i-l ̂ i-1 

* *M ' *M ' ^ 

In equation 3.10 all k^'s (i=l,2,... ,M-l) and n^ are given 

^i constants. In particular k. = % and a positive integer, a. 
^ ®i+l Ni+i gi+i 

and are relatively prime integers where . 
i i 

An optimum number of cycles for each machine center can be 

obtained by applying the Dynamic Programming Algorithm to equation 

3.10. 

Let STERM(N^) represent the summation of all the terms in 

equation 3.10, which contain the variable N.. For example, STERM(N-) 
IV ^ 

SjN^ (1 - Given and let "n-l* ° 
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n-1 
STERM(N ) + f JN ,) where f . (N J = min { E STEBM(N.)} 

n n-1 n-1 n-1 n-i „ *r • _-i i 

For a given N , let f (N , N ) be the min {f (N , N )}. Then n n n n—x „ n n n—x 
Vi 

f (N , N ,) = f (N ). From the recurrence relationship, f (N , N ,) 
n n n—1 n n n n n—i 

= STERM(N ) + f - (N ), it is possible to find f..(N,,) for all 
n n—1 n—1 M M 

possible values of The resultant optimum total production cost 

is min {f»,(N„)} and the set of optimum cycles, N_, N_, N„, can 
u M M ± d M. 
M 

be found very easily once min {f (N )} has been obtained. 

"m " 

The direction of this algorithm is forward. However, it is possible 

to execute the algorithm backward by modifying the recurrence relation­

ship. 

3. N parts and M machine centers with backtracking 

When there is more than one different part or backtracking is 

allowed, the Dynamic Programming Algorithm cannot be applied to the 

case in general. The main reason for this is the fact that the re­

currence relationship may not exist and the principle of optimality 

may not hold. When there is only one part and backtracking is not 

allowed, the decisions made on machine centers 1 through n-2 do 
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not affect the value of STERM(N^). On the other hand, the value of 

f* , (N - ) will not "be affected by the values of N , N , ..., N . 
J. n^-L n M 

These facts guarantee the existence of the recurrence relationship and 

the realization of the principle of optimality. For a multi-part or 

backtracking case, the operation sequences can nullify these facts 

and make the application of the Dynamic Programming impossible. How­

ever, the set of optimum cycles can be found by using the Branch and 

Bound technique. Before applying this technique to the problem, it is 

necessary to develop a general expression for the total production cost. 

The following symbols are defined for the expression. 

Dj: Yearly demand rate for part j. j=l,2,... ,N 

P : The production rate of part j at its kth 
operation 

V, .: The value of part j just after it has finished 
kj its kth operation 

S, ; The setup cost per cycle of part j at its kth 
operation 

N : The number of cycles of the machine center 
kj which is doing the kth operation of part j 

n : The number of containers used to move part j 
^ from the machine center which is doing the 

kth operation of part j to the machine center 
which is doing its k+lth operation. 

a and g : Relatively prime integers such that 
Kj K+I5J 

^k+l..1 _ ^k+l,j 

^kj °kj 
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: A predetermined positive integer such that 

2 : The total number of different operations of 
part j 

In the definition of the above symbols the subscript k repre­

sents the kth operation of the operation sequence of part j. 

The portion of the total production cost per year to be charged 

to part j can be expressed as follows by substituting the subscript 

i with kj in equation 3.10. 

(The production cost of part j per year) 

I . Y. T , D, D, T 

A 
VlJ ^k-l,j 
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Equation 3.11 corresponds to the total cost of a production 

system consisting of one part, part j, and machine centers. 

The production cost for each part j can be obtained similarly by 

equation 3.11. The total production cost per year of this multi­

part production system, is, then, simply the summation of all the 

production costs of N parts. 

(Total production cost per year) 

N 
= E (The production cost of part j per year) 
j=l 

(3.12) 

In Section B-2, STERM(N^) is defined to be the summation of all 

the terms which include the variable in equation 3.10. In this 

section, STERM(N^) is defined similarly. It represents the summation 

of all the terms which have the variable in equation 3.12. The 

actual form of STERM(N^) depends on the operation sequences of the 

N parts. Nevertheless the general form of STERM(N^) is as follows: 

STERM(N ) = z Z • K-

I . V. . D, D, 

1 
+ E • • 5 . V i . I 
jen. ^i *%j,j &j,j 
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I . V* T , D D 

je$. ksY i ^kj "k-l,j 

\-l,j ̂ k-lj 

' ^ tCj ̂Li.j " 
(3.13) 

In equation 3.13, and n^ represent sets of j's 

and k's. The following are the definitions of these sets. 

4.: The set of parts which visit machine center i 
^ at least once 

The operations of part j, which are performed 
at machine center i 

n. : The set of parts which visit machine center i 
^ for its last operation 

Equation 3.13 will be acquired by writing down equation 3.11 

for each part and then collecting and adding all the terms which 

have in their expressions. Equation 3.12 can be rewritten using 

the term, STERM(N^). 

(Total production cost per year) 

M 
= Z STERM(N. ) 
i=l ^ 

(3.14) 
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In order to apply the Branch and Bound technique it is necessaiy 

to acquire a tight lower bound for a given branch. This is possible 

via equation 3.13. The last term in equation 3.13 includes j 

in three places. By factoring out oi^_^ ^ the last term can be re­

arranged as follows; 

I . V. , , D. D D 
Z Z =A{(1 - -J-) - [(1 - pj-) 

jE$.  keY.j  ^  i  ^kj  Vl, j  k j  

k9«l • 

^ (VliJ ' z M  - K  1 ,)]} 
Vl,J ^k-l,j \-l,j ^k-l,j Pkj 

The possible value of ^ ̂  ranges from 1 to the maximum value 

of Nt, , ,, i.e., N . Assume the value inside the bracket 
Jc—J-  9  J  ic—i 

[.] is positive for given j and k. Then the value inside the 

bracket {.} will be minimized by setting j = 1. When the 

value of the bracket [.] is negative, the value of the bracket {.} 

will be minimized by setting \ i j ~ ^ For each possible 

value of N^, this procedure will provide the minimum value of 

STERM(N^). Let MSTEEM(N^) represent such minimum value of STERM(N^). 

The efficiency of this technique will depend on the value of 

the current upper bound. The smaller this value, the smaller the 

total number of branches to be examined. Since the rates of pro­

duction are assumed to be much greater than the rates of demand, the 

value inside the bracket {.} will be minimized in general when 
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OL = 1. This Justifies choosing the current upper "bound among 
K—1 , J 

feasible solutions in which all the machine centers have one common 

cycle number. The current upper bound will be the minimum value 

among these feasible solutions. The common cycle is less than or equal 

to min(N^, N^, ..., N^). 

The branching begins with N^. Any branch whose lower bound 

exceeds the current upper bound will be excluded from further con­

sideration. When the value of a feasible solution is found to be 

smaller than the current upper bound during the branching operation, 

that value will be the new current upper bound. 

An example is appropriate at this point. The meanings and 

definitions of the symbols of equations 3.11 and 3.13 will be clari­

fied via the example. Also the step-by-step procedures in applying 

the technique to the example are to be shown. 

[Example 1.]; A production system is producing 3 different parts. 

There are 3 machine centers. The operation sequence of each of the 

parts is shown below. 

Part 1: (l, 2, 3, l) 

Part 2: (3, 2, l) 

Part 3: (2, 1, 2, 3) 

The following are the data for this production system. 

a) Maximum cycles/yr: = U, = 6, = 7 

b) Demand rate/yr: = 6,000, Dg = 7,000, = 8,000 

c) Production rate/yr: 



www.manaraa.com

6l 

k L 
i) part 1: = 6 x 10 , = 8 x 10 , 

Pgi = 15 X 10^, P^i = 1 X 10^ 

k , U 
ii) part 2: P^g = 3 x 10 , P^^ = U x 10 , 

P^g = 3 X 10^ 

iii) part 3: P^^ = 15 x 10^, P^^ = 2 x 10^, 

I4. k 
P23 = 12 X 10 , P^2 = T X 10 

(*1 = tg = 3' '3 " 

i) part 1: = 3, = U, k^^ = 2, = 20 

ii) part 2: k^g " 5» kgg = 10, = 35 

iii) part 3: k^^ = ^23 " ^33 " %3 = 

e) Unit cost of parts (V ): $/unit 

i) part 1; = 5, = 7, = 10, = 12 

ii) part 2: = 30, = 35, = Uo 

iii) part 3: = 3, Vg^ = 10, = 20, = 50 

f) Setup costs (S ): $/setup 
Kj 

1) part 1: = 2000, = 15OO, = TOO, 
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= 1000 

ii) part 2: = 200, = 200, = 1200, 

iii) part 3: = 100, = 800, = 200, 

Si^3 = imo 

g) Yearly interest rate: I = 0.2 

(Solution Procedures); 

Step l). Determine the 3 sets defined in equation 3.13. 

= (1,2,3), $2 = (1,2,3), $3 = (1,2,3) 

= (1,4), = (3), ¥^3 = (2) 

Ygi = (2)' *22 = (2), ?23 = (1,3) 

Tgl = (3), ?32 = (1), Y33 = (1») 

= (1,2), n3 = (3) 

Step 2). Express STERM(N^) in terms of the symbols which repre 

sent the data for each N^. In this example only STERM(N^) is 

shown. STERM(No) and STERM(N ) can be expressed similarly. Before 
^ 3 

expressing STERM(N^), writing down the sets under the E sign is 

helpful. 
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$1 = ( 1 , 2 3 ) 

*11 ̂  (I'k) ^2 ̂ '''13 ^ 

= (1, 2) 

*1 = ( 1 2 3 ) 

»11, = (4) '12, = (3) *13, = (:) 

k#l k#l k#l 

I . V D D 
STERM(N^) = [8^1 . + g . ̂  (l - ̂ )] 

I . V. D D 
+ [S^i . + —I . ~ (1 - ̂ )] 

I . V D D 
* [S32 • + —— - (1 - ̂ '1 

I . V D D 

* [^23 • "1 * — - »[ (1 - g)] 

I . V D D 

^i- - r  ^31 31 31 
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^22 °^22 22 

^13 **13 ^13 

* 4 'L ' L' 
STERMCNg) and STERM(N^) can be expressed in similar fashion. 

Step 3). Obtain MSTERM(N^), which is the minimum value of 

STEEM(N^), for each possible value of N^. Do the same for STERM(Ng) 

and STERM(Ng). To obtain MSTEEM(N^), it is necessary to check the 

signs of the following terms and set the values of Ogg, and 

equal to 1 or limit values. 

\ 2 \ 
(a): [(1 - p—) - r— . =— 

Ul 31 31 

k  - I D  D  
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(b): [(1 -
32 22 22 

- < (r 
22 22 

- =^) 6(PL^ - P_^)] 
32 

32 22 

D. 2 D? 
(c): [{1 - J—) - r— . =2-

23 13 13 

- ( ̂
3-

1 D. 

k. 
•)(; 

13 13 
P13)] 

If (a) is positive, set = 1. If (a) is negative, set 

= Ng = 7. represents the maximum cycles per year for 

the machine center which is performing the third operation of part 1. 

This machine center is machine center 3 and its maximum cycles per 

year are J. The checking of the signs and assignment of values to 

Ogg and (h) and (c) will be similar. By substituting the 

given data into (a), (b) and (c), the following are obtained. 

150 °31 " ̂ 

(t): loo " *22 = 1 

(c): 5$o + *13 " ̂ 

The minimum values of STEKM(N^) for - 1,2,3,% are obtained 

by substituting all the pertinent data into the expression in step 2 
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with = (Xgg = = 1. The minimum values of STERM(Ng) and 

STERMCN^) are obtained similarly. 

Step U). Prepare a table showing the conçnited values of 

MSTERM(N_), in step 3. 

Table 3.1. Calculated values of MSTERM(N^) 

^^"^^sg^ues of 

MSTERM(N  ̂
1 2 3 4 5 6 7 

MSTERM(N )̂ 413T9 28189 27126 29095 

MSTEBM(Ng) 4803k 25517 18678 15759 14407 13839 

msterm(n )̂ 59740 31820 23380 19810 18188 17540 17449 

Step 5). Obtain the current upper bound from the feasible 

solutions which have a common number of cycles for all the machine 

centers. 

= Ng = Ng = 1: Total production cost/yr = 1^9153 

= Ng = Ng = 2: Total production cost/yr = 85526 

= Ng = Ng = 3: Total production cost/yr = 69184 

= Ng = Ng = k: Total production cost/yr = 6U66U 

The Tm'm'nnnn value of these feasible solutions is 6k,66k and 

this is the current upper bound. The values of the feasible solutions 

happen to be the sums of each column of the table in step 4. This 
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will be always the case as long as all the a's are set equal to 1 

in step 3. 

Step 6). Proceed the Branch and Bound Algorithm beginning with 

N^. Node 0 is the starting point. Its lower bound is inin{MSTERM(N^)} 

+ min{MSTERM(Ng)} + min{MSTERM(N^)} = 27126 + 13839 + 17kk9 = 58kl4. 

This is the overall lower bound. Four branches are coming out 

from node 0, and their lower bounds are calculated as follows: 

LB = 58U1I+ - min{MSTERM(N^)} + MSTERM(N^). Since takes a 

specific value for each of the four branches, min{MSTERM(N^)} 

should be replaced with MSTERM(N^) in calculating the lower 

bounds. The following shows the lower bounds of the four branches 

from node 0. 

*CUB = 6k66k 

*LB = 
58411; 

N. = 

N, = 

N, = 

N. = 

1, LB 

2, LB 

3, LB 

k, LB 

72667 

59477 

58414 

60383 

*CUB: Current Upper Bound 

* LB; Lower Bound 

Branches which have lower bounds bigger than CUB will be ex­

cluded from further consideration. = 1 is one such branch. 

One point to mention is that MSTERM(N^) is a U-shaped function 

of N^. Since the lower bounds of the above branches are 584l4 -

min{MSTERM(N^)} + MSTERM(N^), it is preferable to start the calcula­

tion at the minimum point of MSTERM(N^), i.e., = 3. Branching 

and the calculation for its lower bound will go on to the left of 
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this point as long as MSTERM(N^\^ CUB - 58U1U + min{MSTERM(N^)} 

= 33376. The same will apply to the right of the minimum point. 

This procedure will speed up the overall efficiency of the algorithm 

when is a large number and procedure will be used for every 

branching operation to increase the efficiency of the algorithm. If 

this procedure were used, the branch = 1 would not be considered. 

There are three branches left for further consideration. From 

node 1, the potential number of branches is 6 as assumes 

1, 2, ...» 6. Two types of lower bound will be calculated for them. 

The first type which is called the First Lower Bound, is to be ob­

tained from the LB of node 1 and the table in step U. The second type, 

which is called the Second Lower Bound, is to be obtained from the 

First Lower Bound and the expression of STERM(N^) in step 2. The 

value of the SLB, the Second Lower Bound, will be always bigger than 

or equal to the value of the FLB, the First Lower Bound, for a given 

node. The FLB is used for a quick initial elimination of any unpromis­

ing branches. The SLB is used for further elimination. 

The LB of node 1 is 5841% - min{MSTERM(N^)} + M8TEEM(N^ = 2) 

= min{M5TERM(Ng)} + min{M8TEBM(N^)} + MSTERM(N^.= 2) = 59^77. 

Since Ng will take a specific value for each of the new 

branches from node 1, minCMSTERMCNg)} should be replaced with 

MSTEBM(Ng) in calculating their lower bounds. Then the FLB will 

be calculated as follows: FLB = 59^77 - min{MSTERM(N2)} 

+ MSTERMCNg)- Since CUB - 59^77 + min{MSTEBM(Ng)} = 19026, 

the branches of Ng = 1 and Ng = 2 will be eliminated. The 

FLB's of the other branches are shown below. 
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CUB = 6U66U Ng = 3, FLB = 64316 

\ ̂ ̂  «2 = k, FLB = 61397 

LB = 59hlV 
Ng = 5, FLB = 6OOU5 

Ng = 6, FLB = 59U77 

When = 2 and takes one of (3,4,5,6), the values of those 

a's which are related to both and may not be 1. If some 

of them are no longer 1, it is possible to obtain another lower 

bound which is much bigger than the FLB for some of the above four 

branches. This new lower bound is the SLB. As pointed out before, 

this will be obtained from the FLB and the expression of STERM(N.) 

in step 2. 

Before calculating for the SLB's, writing down the terms which 

include the a's in the expression of STERM(II^) according to the 

following fashion will save time and effort. 

STEEM(N^) MSTERM(N^) a's 

N 
6000 . 2ko, "31, 

i-. 21.500, ^-857.5, <-22 

21.00 . {§-^. ̂}, i^-69-3. «13 
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SIERM(Ng) MSTEBM(Ng) a's 

r l h  1 
i- • 3000 . - z— • T^} » 

101, 
N, '80 • 120' *11 + N • 

^. 21000 .(11-^.^}. ^ . 29W. . 5 
12 + N, 

I- . 8000 . ^ ^84 
120 (^3 • 525 

•}. ~ . 91.^3, 
"2 

*23 + N, 

STERM(N^) MSTERM(N^) a's 

i- . 1.200 . ^ • 5^}. ^ . 267.75, 
3 

"21. ̂  

i-. 16000 . {||-^. |i). ^ . U26.6T, 
3 

*33 4. N, 

The terms in the first column are those containing a's in the ex­

pression STEEM(N^). The same terms appear in the second column where 

the a's take values of 1 or the limit values. These terms appear 

in the calculation for MSTEEM(N^). The third column shows the rela­

tionships between the a's and N^. For example, a^ and 

^1 ^1 are relatively prime integers where — . 
3 **31 

When = 2 and = 3, the values of the a's will change 

as follows; a^ = 1, a^g = a^^ = 3, a^^ = a^^ = 2, a^g = 1, 
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and = 0^2 = 1» It should be noted that the a*s which do not 

relate to both and are allowed to assume 1. Since the terms 

in the first column are the only terms to be affected by the new 

values of the o's, the SLB of this branch can bç calculated as 

follows : 

Sia(N^ = 2, Bg = 3) = + I . 21(5000 . <11 - I • |||> 

- I • 857.5 

+ I • 2kOO • {§ - J • - J • «9-3 

4- 3°oo • - 3 -

+ I • 8000 . {g| - i . - I . 91. k3 = 72642 

Since SLB(N^ = 2, = 3) > CUB, this branch will be excluded. 

Similar computations will disclose the SLB's of all the other 

branches from nodes 1, 2, and 3- They are shown below. 

CUB = 64664 ^ Ng = 3, FLB = 6U316, SLB = 72642 

^1 ̂  Ng = 4, FLB = 61397, SLB = 66422 

LB = 
59477 

Ng = 5, FLB = 60045, SLB = 69084 

N« = 6, FLB = 59477, SLB = 66l64 
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k) N = 3, FLB = 63253, SLB = 63253 

N = 3 
N- = U, FLB = 60334, SLB = 67000 

LB = 
58414 

Ng = 5, FLB = 58982, SLB = 65676 

'J) N_ = 6, FLB = 584I4, SLB = 61764 

N. = 4 N 2 = 4, FLB = 62303, SLB = 62303 

Ng = 5, FLB = 60951, SLB = 66457 

LB = 
60383 

Ng = 6, FLB = 60383, SLB = 64546 

Nodes 4, 5, 6 and 7 are the only branches which have survived 

the elimination by the SLB's. The branching operation will continue 

beginning with node 4. The total number of the potential branches 

from node 4 is 7 as assumes 1, 2, 7» As before, their FLB's 

are to be computed first. The FLB of node 4 is MSTERM(N^ = 3) 

+ MSTERMCNg = 3) + min{M8TERM(N^)} = 63253. Its SLB is STERM(N^ = 

+ STERM(N^ = 3) + iiiin{MSTERM(N^)} = 63253 where the values of all 

a's are 1. The fact that all a's = 1 in the calculation for the 

SLB is the reason for the equality between the two lower bounds. 

Since assumes a specific value for each of the 7 branches, the 

FLB's are calculated as follows: FLB = 63253 - min{MSTERM(N^)} 

+ MSTERM(Ng). Since CUB - 63253 + min{MSTERM(N^)} = I886O, the 
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tranches of = 1, 2, 3, and U will be eliminated. The PLB's 

of the remaining "branches are shown below. 

CUB = 6k66k ^ = 5, FLB = 63992 

= 6, FLB = 6334k 

= 7, FLB = 63253 
SLB = 

When = 3, Ng = 3, and takes one of the set (5, 6» 7), the 

values of the a's which are related to both and or Ng and 

Ng may take values other than 1. These are o^g, «g^ and 

Ogg. To be specific, when = 3, Ng = 3, and = 5» " 5» 

a^g = 5» and Og^ = = 3. By taking into account these changes, 

the SLB of this branch can be calculated as follows: 

SLB(N^ = 3, = 3, Ng = 5) = 63992 

+ i . 6000 . - J • ï|^> - I • 2U0 

+ I . 21000 . {% - y ' - Y ' 29U0 

+ i . 4200 - Y ' ëo^ - 5 ' 267.75 

+ J • 16000 . - Y • ^25^ ~ J * ^26.67 = 70758 

Since SLB(N^ = 3, Ng = 3, Ng = 5) > CUB, this branch will be 
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eliminated. Similar calculations will disclose the SLB's of all the 

other branches from nodes U, 5, 6 and 7. They are shown below. 

CUB = 6k66k 
3 

ri 

Ng = 3 

SLB — 
63253 

ïïg = 5, FLB = 63992, SLB = 70758 

- = 6, FLB = 633UU, SLB = 6608k 

Ng = 7, FLB = 63253, SLB = 69671 

SLB = 
61764 

= U, FLB = 64125, SLB = 67981 

- = 5, FLB = 62503, SLB = 67918 

N = 6, FLB = 61855» SLB = 62215(New Current 
Upper Bound) 

Ng = 7, FLB = 61764, SLB = 66527 

SLB — 
62303 

= 5, FLB = 63042, SLB = 68991 

« Ng = 6, FLB = 62394, SLB = 66637 

Ng = 7, FLB = 62303, SLB = 70850 

SLB = 
64546 

Ng = 6, FLB = 64637, SLB = 64997 

Ng = 7, FLB = 64546, SLB = 69154 
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The SLB of node 8 is less than the CUB. Also it is a feasible 

solution. Hence its value, 62215, becomes the new current upper 

bound. Since there are no branches to be considered further, node 8 

is the optimum solution. The optimum number of cycles per year of 

each machine center and its total production cost per year are as 

follows : 

Optimum Total Production 

Machine Center Cycles/ïr Cost/Yr 

1 3 

2 6 $62,215 

3 6 

The number of containers to be used at each operation of 

each part can be obtained by the relationship, n = k . 6 
kj kj K+Xjj 

1st 2nd 3rd Uth 

Parts Operation Operation Operation Operation 

1 6 4 2 20 

2 5 10 35 

3 6 Ik 5 20 

Step T). Setup actual production scheduling. One important 

point to remember is to make sure that the sequences of each cycle 

are identical for a given machine center. There are many different 

ways to schedule this production system. The following is one example. 
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Production 
Idle Machine Center 1 

Machine Center 2 

p p P P 
21 22 13 33 

Machine Center 3 

P, 
12 

The numbers represent part numbers to be processed with rates of 

production specified for the scheduled production period. It happens 

that machine center 1 requires two identical machines. The total 

production cost per year, $62,21$, will be realized if this sequence 

is to continue over a long period of time. 
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C. Optimum Production Capacities of Machine Centers 

vith Non-Deteriorating Machine Capacities 

1. Introduction 

Production capacity or machine capacity is defined to he the 

available machine hours per year. In previous sections it was assumed 

that the available capacity of each machine center is infinite. Any 

additional machine capacity, if necessary, can be acquired without in­

curring cost. The total production cost, accordingly, does not include 

the cost which is associated with machine capacity. 

In this section the infinite capacity assumption is relaxed and 

total production cost includes capacity cost. However, three restric­

tive assumptions are made. They are: l) a known fixed cost occurs 

each year for carrying each identical machine at a given machine center 

which does not change over time, 2) the available machine hours of 

each machine do not decrease over time, and 3) there will be no 

machine replacement. The fixed cost includes maintenance cost, taxes, 

insurance, space cost, interest on the investment in the machines, etc. 

It should be noted that machine depreciation will not be included in 

the fixed carrying cost due to the third assumption. The problem 

is to find the optimum number of identical machines as well as the 

optimum production cycle for each machine center. 

Even though a fixed cost for carrying individual machines is 

recognized, the situation is still far from reality. A machine involved 

in a production process always deteriorates physically in time as it 

is used and so does its production capacity. Its current market value\ 
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usually goes down as it gets older and it becomes increasingly obso­

lete as technological innovations and breakthroughs are realized. Its 

maintenance cost increases every year. These factors make its replace­

ment at some point of time inevitable. From this practical point of 

view, the three assumptions are highly improbable. However, this sec­

tion has been inserted here as an extension of Section B as well as an 

intermediate step toward a more realistic model. In later sections all 

the three assumptions are relaxed and more realistic models are presented. 

In Section B no setup time is considered explicitly even though 

the setup cost in recognized. In this section it is assumed that a 

fixed amount of production capacity is consumed for setup during each 

cycle for each operation on each part. If there were no setup time, 

the number of identical machines required at each machine center would 

not change no matter what production cycle is assigned. It is the 

setup time which links the decision on cycles to the decision on the 

number of machines. 

When there is only one part, the number of identical machines re­

quired at each machine center is 1 disregarding their cycles. This 

is due to assumptions l6 and 17. In other words, the total machine 

hours required by a single part at any machine center should not be 

greater than the available machine hours of a single machine. Otherwise 

assumptions l6 and 17 would be violated. Because of these restrictions, 

the solution of the optimum number of machines for each machine center 

for the first case of Section B is trivial. The case to be dealt with 

is the second one where there are M machine centers and N parts 
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with "backtracking. Finding an optimum solution is essentially the 

same as before. 

2. N parts and M machine centers with backtracking 

The following definition of symbols is made in order to express 

the total production cost as well as related constraints. 

m. (N. }: The minimum number of identical machines required at 
^ machine center i when its cycle is per year 

f.: The fixed cost per year for carrying each identical 
^ machine at machine center i 

t. : The setup time per cycle at kth operation of part j 

It is easy to find m^(N^) when the number of parts being 

processed at machine center i is small. As the number of parts 

visiting machine center i gets bigger, it might take some time to 

find m^(N^). It should be noted that m^(N^) is not another indepen­

dent variable but a dependent variable of 

With these symbols the total production cost per year and related 

constraints are as follows; 

(Total production cost per year) 

M 
= Z {STERM(N.) + m.(N.) f.} (3.15) 
i=l 1111 

subject to 

. t^j + £ 1 for all i, where i = 1, 2, ..., M 
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and and 

The detailed procedures in executing the Branch and Bound technique 

for an optimum solution are similar to those of Example 1 in Section 

B-3. The term m^(Nj^) • capacity cost, causes some minor modifi­

cations. First, all the STERM(N^)'s in the solution procedures of 

Example 1 are replaced with STERM(N^) + m^(N^) . f^. Also all the 

MSTEEM(N )̂'S are replaced with MSTERM(Nj) + m^(N^) . f^. The entries 

of the table in step U are, then, modified as follows: 

Table 3.2. MSTERM(N^) + m^(N^) . f^ 

MSTERM(N )̂ 

+ m (̂N )̂ . 
'\JJ^ues of 

1 2  . . .  

MSTERM(N )̂ MSTEEM(N^=1) MSTERM(N^=2) . . . 

+ . + m^(N^=l) . f^ + m (̂N^=2) . f^ 

MSTERM(Ng) MSTERM(N =1) 
2 

• • • • 

+ mg(Ng) . '2 + mg(Ng=l) . fg • 

• # • • • • 

There will be no changes for step 5 except that the values of 

feasible solutions are calculated by equation 3.15. 

Because of the additional term m^(N^) . f^, MSTERM(N^) + m^(N^).f^ 

is not a U shaped function of N^. Since m^(N^) increases monotoni-

cally as increases MSTERM(N^)+ m^(N^) . f^ will increase 
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monotonically in the right side of the minimum point of MSTERM(Nj^). 

But MSTERM(N^) + m^(N^) . f^ may fluctuate in the left side of the 

minimum point of MSTERM(N^). Accordingly, the "branching and calcula­

tions for lower bounds will be performed for all possible cycles, i.e., 

1, 2, ...» minimum point. To the left side of the minimum point the 

branching and calculation for lower bounds will continue as long as 

MSTERM(Nj^) + in^(N^) . f^ £ CUB - LB + min{MSTERM(N^) + m^(N^) . f^^}. 

With these exceptions, the procedures are exactly the same as 

those of Example 1. The number of identical machines at each machine 

center is the additonal information provided by the optimum solution. 

Even though the additional term, is added to 

MSTEBM(N^) and STEBM(N^), it will not increase the total number of 

branches to be considered. It simply adds one more term to each branch. 

The problem is to find for each possible value of at each 

machine center. 

As defined before m^(N^) represents the minimum number of identi­

cal machines required at machine center i when its production cycle is 

per year. To find the minimum number of identical machines at a 

given machine center, each individual machine should be loaded as many 

parts as possible. As the number of parts Increase at a given machine 

center, the total number of trials and errors may increase. 
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D. Optimum Machine Replacement Policy 

1. Introduction 

The three assimqjtions made in Section C, i.e., non-deteriorating 

machine capacities, the fixed cost for carrying individual machines, and 

no replacement, are relaxed in this section. The physical deteriora­

tion of machines is recognized by assuming a fixed amount of capacity 

decrease per year for each machine. The two standard assumptions of 

Terhorgh (19^9) are introduced to recognize the increasing maintenance 

cost and obsolescence. Replacement is signaled when the adverse 

tnim'TtniTn of defender is larger than that of challenger. One difference 

between Terborgh's model and this model is the treatment of the 

setup cost and WIP holding cost. While these costs are subsumed in 

the operating inferiority in Terborgh's model, they are recognized 

explicitly in this model. However, the recognition of these costs is 

achieved by making another simplifying assumption. The next section 

discusses more about the assumption. 

Two replacement models are discussed in this section. The first 

one is the case where there are no budgeting constraints. The second 

one is the case where replacement decisions are made under some budget­

ing constraints. An example is given for the first model to show an 

actual application of the model. 

2. A simplifying assumption 

The last term of equation 3.13 represents the summation of the 

insteO-lation inventory holding costs of the machine centers which are 
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immediately preceding machine center i in the production sequences of 

the parts being currently processed at machine center i. Its quantity 

is a function of and the cycles of the preceding machine centers. 

If an assumption were made in such a way that it became a function of 

only, equation 3.13 would be more manageable and easy to work with. 

Although this practical point of view is the prime motivation in 

making the assumption, there is some justification for the assumption 

also. If the number of different par-ts being processed at machine 

center i is large, their yearly demands are in similar magnitudes, 

and their unit values are comparable, then it is not unreasonable to 

replace the quantity in the last bracket, [(l - ̂ ^)(l - % ) 
kj Vl,j 

^-l,j °k-l,J ^k-l,j 

fixed constant x^. The introduction of may over estimate the 

installation inventory holding costs for some machine centers and 

under estimate that for some other machine centers. However, it is 

conjectured that the over estimation and the under estimation may 

cancel each other to a certain degree and the net result is a reason-, 

able approximation of a correct figure. 

The assignment of x^ to the last bracket makes STERM(N^) 

a function of only. It also makes it possible to choose an opti­

mum disregarding the decisions of production cycles made on all 
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the other machine centers. Above all, it is the simplifying assump­

tion which makes it possible to recognize the setup cost and inventory 

holding cost explicitly in the calculation of the adverse minimum of 

challenger and defender. Under the assumption which has just been 

made, STERMS(N^) represents a modified form of STERM(N.) and is 

expressed as follows : 

I . V D D 
STERMS(N ) = E Z [S . N + ^'1 . ̂  (l - ̂ )] 

^ je$. keY.j kj i 2 

+  Z  .  -J .  g . V  . 1  
jen *i *1 ,j ?! ,j 

Z Z ^ ' \-l..1 ^ T 

keY.j 2 ' ' i 

k#l 

(3.16) 

3. Opt.iwuTTi production capacities of machine centers and replacement 
policy without budgeting constraints 

Two situations are considered in this section. The first one is 

the case where the very beginning production capacity of machine center 

i is to be selected. The second one is the case where an optimum 

replacement decision is to be made at the beginning of a certain year. 

Since there is no budgeting constraints, it is possible to re­

place any number of machines of machine center i as their adverse 

minimum is bigger than that of challenger. Accordingly, it is assumed 

that all the identical machines of machine center i are replaced 
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at a same point of time. This means that all the machines will have 

a same age. 

Adverse minimum is defined to "be the lowest combined time-

adjusted average of capital cost, operating inferiority, and 

STERMS(N^). The capital cost is the repayment of and the return on the 

investments in the machines. The operating inferiority represents the 

difference between old machines and the best machines available in the 

market in times of their operating costs and service values. The 

difference originates from the deterioration and obsolescence of the 

old machines. STERMS(N^) represents a portion of the total setup 

costs and WIP holding costs, which is directly related to N^. It 

should be noted that the operating inferiority does not include the 

setup costs and WIP holding costs. The main part of it is mainte­

nance costs. 

The two standard assumptions of Terborgh's model are used in this 

model. The first one assumes that future challenger will have the 

same adverse miniimim as the present one. The second one assumes that 

the present challenger will accumulate operating inferiority at a 

constant rate over its service life. While the challenger and the de­

fender represent each single machine in Terborgh's model, they refer 

to each group of identical machines in this model. 

d^ is defined to be a fixed amount of capacity decrease per year 

for each individual machine at machine center i. It is assumed that 

the decrement d^ occurs in lump sum at the beginning of each year 

disregarding the usage of each machine. It is also assumed that the 
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decrement d^ is distributed evenly at the end of each cycle. When 

the machines are n years old, the available capacity is 1 - n . 

As the available capacity of each machine decreases over time, it 

may be required to choose a smaller production cycle than the current 

one at the beginning of a certain year. This cycle change may cost a 

certain amount of money due to some necessary adjustments for WIP 

inventory. To keep the model simple it is assumed that the cost of 

cycle change is subsumed in the operating inferiority. 

Figure 3.13 shows the relationship between STERMS(N^) and N^. 

is a production cycle which minimizes STERMS(N^). Note that 

STERMS(N^) is a U-shaped function of N^. 

CO 

•i—t—i-
^i-i w. N i+1 142 

Figure 3.13. STERMS(N^) and 
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An. optimum production cycle at a given point of time depends on 

* 
the available capacity, and When there is sufficient capacity 

to keep min(N^, N.), it is the optimum production cycle. Otherwise 

an optimum production cycle is the biggest cycle among the all possible 

cycles which are allowed by the current capacity. It is smaller than 

min(N^, N^). With optimum production cycle, the value of STERMS(N^) 

* 
is represented by STERMS , where m. represents the number of 

m. k 1 
i > 

machines at machine center i and k represents the age of the 

machines. 

Suppose that machine center 1 starts with m^ brand new ma­

chines. All the parts to be processed at this machine center should 

be scheduled in such a way that the loading of each machine be well 

balanced. Otherwise the freedom in selecting a production cycle will 

be much more restricted. At the beginning of each year the production 

cycle of the previous year will be reviewed to decide whether it is 

still proper production cycle or not. If not, a new production cycle 

ifill be established, which is optimum with respect to the current 

capacity. In this case, it may be necessary to redistribute the work 

assignment to each machine for the sake of a balanced loading. 

Since the available capacity of each machine decreases over time, 

there is a maximum life for the m^ machines. It is a time period 

beyond which the available capacity cannot satisfy the yearly demands 

of the parts even with one cycle per year. The machines should not be 

kept longer than their maximum life, n represents the maximum life 
°i 

of m. machines. 
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Before developing general expressions for the adverse mlnirnm 

challenger and defender, the following definition of symbols is made; 

d.: Annual decrement of the available capacity 
^ of each machine at machine center i 

STERMS* : The value of STERMS(N.) when N, is an 
m k 1 1 

* optimum cycle with m. machines which are k 
years old 

N : The maximum life of m. machines 
""i ^ 
B.: The first cost of a new machine available in 

the market '1 

J.; The current market value of a present 
^ machine at machine center i 

"b. : The estimated salvage ratio of a new machine 
in with respect to B. at the end of n years 

from now 

j. : The estimated salvage ratio of a present 
machine with respect to J at the end of n 
years from now 

G.: The gradient of operating inferiority of each 
1 machine at machine center i 

f.; The fixed cost for carrying each machine of 
^ machine center i, which is not counted 

neither by operating inferiority nor STERMS(N^) 

F. : Inferiority gap between a new machine and a 
^ present one. For a new machine, F is zero. 

For a present machine, it is equal to the dif­
ference in operating inferiority between the 
new one and the present one 

x: The age of the present machines at machine 
center i 

r: Discount rate 

Using the above symbols, the adverse minimum of m^ new machines 

can be expressed as follows : 
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(Adverse minimum of m. new machines) 

= »ln . [(n^ • - (">i • Bj . 
n=l,2,...,n 

"i 

+ ("i • * "i^l + 'f'k 'F'm  1 • 

To obtain the adverse minimim of challenger, there is one more 

variable yet to be determined in equation 3.17. That is m^ which 

represents the total number of new machines to be installed at machine 
« 

center i. Since the challenger is composed of m^ new machines which 
» 

minimize the adverse minimum over all possible values of m^, 
« 

should be found. The only way to find m^ seems to be to calculate 

the adverse minimum for each possible value of m^ and pick one value 

of m^ which minimizes the adverse minimum. This does not mean that 

an infinite number of different values of m^ should be tried. There 

are a lower bound and an upper bound of m^, and the comparison of 

the values of the adverse minimum should be restricted within this 

range. 

In Section C m^(N^) was defined to be a minimum number of 

identical machines required at machine center i when its cycle is 

per year. The lower bound of m^ is the number of machines re­

quired when = 1, i.e., m^(0U = l). A symbol m^ is used to 

represent such bound and m. = m. (N. = l). 
- a l l  
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As increases, less restriction is imposed on the freedom 

in selecting an optimum production cycle at the beginning of each 

year. This means that m^ + 1 machines can realize a smaller or at 

most an equal value of STERMS(lI, ) than m^ machines each year. In 

* * 
other words, STERMS , < STERMS , for k = 1,2,...,n . 

'^i+l,^ - "'i,^ "'i 
* 

However, there is a limit value of m. beyond which STERMS , 

= STJjRMS , for k = 1,2,... ,n and n = n . Since nothing 
"i Vi "i 

is going to be gained by increasing the value of m^ beyond the 

limit, such limit is the upper bound of m^. A symbol m^ is used 

* 
to represent the upper bound. Hence, m^ — ^ ̂' 

Now it is possible to express the adverse minimum of challenger. 

(Adverse minimum of challenger) 

min {min [(m, . B. )(%)^ - (m. . B. . b. )(^)^ 
m.  0 = 1 , 2 . . . ^  ^  P "  ^ ^  

= Bin . ((m- . - (m* . 
n—1,2,. > • ,n^* 

• '"I • ^ "I - \ ®™MS% ̂ (f)J ipl ] (3.18) 
k=l 1, 



www.manaraa.com

91 

The adverse minimum of defender which is composed of m^ 

machines that are x years old can be expressed as follows; 

(Adverse minimum of defender) 

= Bin [(m. . - (m. . 
n=l, 2 , . . .,(n^ - x) 

. Fj 4. . G.)(|r + m. . f. + j STEEMS* . (|)^ ] 
k—J. 19 

(3.19) 

In equations 3.17 and 3.l8, (~)^» (&)^» and (^)^ are 
pn in gn x k  

the interest factors being used by G. W. Smith (1973). 

a. The beginning production capacity of machine center i 

The optimum beginning production capacity of machine center i is 

* 
The defender in this case is the status quo which means no produc­

tion at all at machine center i. Since it is mandatory to produce 

parts at machine center i, choosing a challenger is the only alterna­

tive. 

An example is presented below to clarify the meanings of the 

symbols of equations 3.17 and 3.18 and the underlying logic of finding 
« 

# 
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Example 2) There are 7 different parts to be processed at machine 

center i. The following are the data given. 

i) STERMS(N.) = 3000 ^ N* = 6 

ii) = 8 

iii) (Time irnit: year) 

Parts Process- Setup The consumption of the available 

A 

ing time time per 
per year cycle ^ 

.1 .OU 

capacity by 

= 1 2 

.14 .18 

each part 

3 

.22 

at a given cycle 

4 5 6  

.26 .3 .34 

B .1 .Ok .14 .18 .22 .26 .3 .34 

C .1 .Ok .14 .18 .22 .26 .3 .34 

D .1 .Ok .14 .18 .22 .26 .3 .34 

E .2 .04 .24 .38 .32 .36 .4 .44 

F .2 .04 .24 .38 .32 .36 .4 .44 

G .2 .04 .24 .38 .32 .36 .4 .44 

iv) Annual capacity decrement d_ = .1 

v) = 20,000, b^^ = .U, b^2 = .2, b^^ = J, b^^ = 0 

for k 2 ̂ 

vi) = 1,000, f^ = 1,000, r = 105? 

Solution procedures) 

Step l) Do a balanced loading beginning with mj^(N. = l). 

in^(N^ = l) = 2 machines. 
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The case of 2 machines 

n and available l(l.O) 
capacity 

2(.9) 3(.8) k(.7) 

optimum 

% 

Balanced 
loading and 
capacity re­
quired for each 
machine 

= 3 = 2 N. = 1 = 1 

.88(ABCD) .82(ABCG) .66(ABCG) .66(ABCG) 

.96(EFG) .Tlt(EFD) .62(EFD) .62(EFD) 

n and 
available 
capacity 

optimum 

^i 

Balanced 
loading and 
capacity re­
quired for 
each machine 

The case of 3 machines 

1(1.0) 2(.9) 3(.8) k(.7) 5(.6) 6{.5) 

N.=5 N^=5 N^=3 «1=2 N^=l 

.9(ABC) .9(ABC) .T8(ABC) .66(ABC) .5U(ABC) .U2(ABC) 

.7(DE) .7(DE) .62(DE) .5U(DE) .!f6{DE) .38 (DE) 

.8(FG) .8(FG) .T2(FG) .6U(FG) .56(FG) .48(FG) 

A similar loading scheme will be applied to each value of m^ 

until it reaches its upper bound which is 7 in this example. 
* 

Note that n^ = U and n^ = 6. STERMS^ g, for example, is 

STERMS(N^=5) = 3000 . 5+-—222. = 60,000. In the loading process, 

the production capacity required at each machine should not be bigger 

than the available capacity at a given year. 
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Step 2) ?y using equation 3.17» find the adverse minimum of 

new machines for each possible value of m^. 

The case of 2 machines 

n 12 3 

The value of 
equation 3.17 75,000 7^,334 88,673 96,153 
for a given n 

The case of 3 machines 

n 1 2 3 5 6 

The value of 
equation 3.17 8l,600 69,885 65,4^9 65,048 66,680 7^,628 
for a given n 

A similar calculation will disclose the adverse minimum of 

new machines for each value of m^. The summary of the results 

is "xiven below. 

ra^ 2 3 5 6 7 

Adverse 7^,334 65,0U8 69,925 76,697 8k,671 90,172 
minimum 

. * 
Step 3) Find m^ which minimizes the adverse minimum. From 

« 
the summary of the results in step 2, m^ = 3. Hence, the optimum 

beginning production capacity of machine center i is 3 machines and 

its adverse minimum is $65,048. The dollar amount, $65,048, is the 

lowest combined time-adjusted average of capital cost, operating 
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inferiority, and STERMS(]!I^). The economic life of the 3 machines is 

U years at which the adverse minimum is realized. 

b. An optTTtniTn replacement policy at the beginning of a certain 

year Suppose that machine center i is composed of m^ machines 

which are x years old at the beginning of a certain year. The 

decision on replacement depends on the adverse minimum of defender 

which is the x years old machines and that of challenger which is 
« 

composed of m^ new machines. If the former is bigger than the 

« 
latter, the replacement of the m^^ old machines with new 

machines is an optimum policy. Otherwise no replacement is an 

optimuai policy. No conclusive statement can be made on the rela-

« 
tionship between m^ and m^. They can be the same or can be different 

depending on the data available. Whatever the values of m^ and 
» 
m^ mif^t be, following the optimum replacement policy at the beginning 

of each year will guarantee an optimum production capacity at machine 

center i all the time. 

The adverse minimum of defender can be obtained from equation 3.19. 

The adverse minimum of challenger can be obtained by following the 

solution procedures given in Example 2. 

U. Optimum replacement policy with budgeting constraints 

When there is some budgeting constraints, it may not be possible 

to replace all the machines of machine center i at a same time. 

In this case, it is possible that x machines are replaced with y 

machines where x and y are non-negative integers. However, it is 
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found that the replacement of x machines with y new machines 

requires a couple more assuaçtions and approximations on the setup 

cost and inventoiy holding cost which will let the analysis digress 

too much. While leaving the subject as a further research, the analy­

sis is limited to a case where all the machines of machine center i 

are replaced at a same point of time. Under this circumstance, 

several machine centers whose replacements are indicated by the opti­

mum replacement policy compete against each other for a limited budget 

at a beginning of each year. 

The problem can be formulated in an Integer Programming with 

an appropriate objective function. Since the urgency of replacement 

is reflected by the excess of the adverse minimum of defender over 

that of challenger, the objective function is the summation of the 

excess amounts of the machine centers whose replacements are indi­

cated. An optimum policy should identify the machine centers to be 

replaced and minimize the objective function. 

Before setting up the linear objective function and constraints, 

the following definition of symbols is made. 

AMC.: The adverse minimum of challenger of 
^ machine center i 

AMD. : The adverse minimum of defender of machine 
^ center i 

ft: The set of machine centers at which 
AMD^ - AMC^ is positive 

L: Capital available for replacement at the 
beginning of a year 
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X.; Replacement decision variable whose value is 
1 or 0. It is 0 if m. old machines of 

^ * 
machine center i are replaced vith m^ new 

machines. Otherwise it is 1 

Using the above symbols the problem can be formulated as 

follows : 

Min Z X.(AMD. - AMC ) 
ieSî ^ ^ 

S. T. 

Z 
ieO 

(1 - X^) m. B. < L 
1 — (3.20)  

The problem can be solved by several different approaches. 

One of them is the MINT Algorithm which is based on the Land and 

Doig (i960) method. The algorithm is programmed in the FORTRAN 

(Kuester and Mize, 1973). 
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IV. STOCHASTIC CASE 

A, Production Lead Time and WIP Inventory 

1. Introduction 

The production system to be discussed in this chapter is dif­

ferent from the one covered in Chapter III in several aspects. The 

system discussed in this section is stochastic. Even though the 

processing sequences of N parts are predetermined as before, the 

time required for production and moving among M machine centers 

for each part is stochastic. In addition the yearly demand of 

each part is stochastic with a time invariant mean. In the previous 

chapter each machine center processed the parts cyclically. Each 

machine center of the production system in this chapter processes 

the parts by lots and the size of the lots for each part is predeter­

mined. The service discipline at each machine center is first-come-

first-served. 

Once each lot has finished its final operation, it will be 

stored temporarily at an area called Finished Piece Parts Storage. 

The demands for the finished piece parts occurring in the assembly 

line are satisfied from the storage. Production orders to the 

production floor are generated based on a lot size-reorder point model. 

Some of the assumptions made in Chapter III are retained in the sto­

chastic production system of this chapter. They are assumptions 

10, and IT. The relaxation of assumption l6 does not mean lot 

splitting. Individual units contained in one particular lot will be 

moved together until the lot arrives in the Finished Piece Parts Storage. 
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While the WIP inventory in Chapter III was referred to the 

parts on the production floor only, in this chapter it refers to 

parts on the production floor and in the Finished Piece Parts Storage. 

The average level of the WIP inventory of this stochastic pro­

duction system is a function of many different factors. However, it 

seems that the production lead time of the parts is the most important 

factor to the average level. Here the production lead time of a 

part is defined as the time spent on the production floor by the 

part. Since the effect of the production lead time on the average 

level of the WIP inventory is crucial, it is discussed in detail in 

the next section. 

In Section 3 a brief discussion on the Theory of Queues and its 

applicability to the production system of this chapter is presented. 

Ancker and Gafarian (1961) solved a queueing system with multiple 

Poission inputs and exponential service times by using recursion 

relations for the steady-state probabilities of n in queue and some 

type in service. A different approach in solving the same queueing 

system seems to be a little bit simpler and quicker in arriving at the 

same final result. 

2. Production lead time and WIP inventory 

The WIP inventory is composed of two different groups. One 

group is the WIP inventory on the production floor. The other is in the 

Finished Piece Parts Storage. For the sake of convenience, the former 

is called the WIP inventory in production and the latter is called the 

WIP inventory in storage. The effects of the production lead time 
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on these two WIP inventories are different and they are discussed 

separately. 

a. Production lead time and WIP inventory in production When 

the yearly demand of a part is distributed with a time invariant mean, 

then the average level of its WIP inventory in production in terms of 

unit-years is proportional to the average production lead time of the 

part. The size of lots, however, does not affect the average level of 

the inventory. It is easy to show the validity of the statement by 

the following relationship. 

(Average WIP in production in unit-years) 

= ̂  . Q . (Average production lead time) (b.l) 

where D represents the yearly mean demand and Q represents the 

size of one lot. Since D is assumed to be a constant, the level of 

the inventory is directly proportional to the average production 

lead time. 

The average level of the WIP inventory of a part in terms of 

$-years is not necessarily proportional to its average production 

lead. time. Since the unit dollar value of the part changes at each 

machine center, it is necessary to know the average time spent at each 

machine center as well as the unit dollar value of the part to find 

the average inventory level in terms of $-years. Nevertheless, 

it is possible to approximate the level if the initial unit dollar 

value and the final unit dollar value of the part are available. By 
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assuming that the arithmetic mean of these two unit dollar values 

represents the unit dollar value of the part during its production, 

(Average WIP in production in $-years) 

= % . Q . V . (Average production lead time) 
Q mean 

= D . • (Average production time) (k.2) 

where V represents the arithmetic mean. 
mean 

From equation k.2 the average level of the WIP inventory in 

production of a part in terms of $-years is proportional to its 

average production lead time. 

b. Production lead time and WIP inventory in storage The 

average level of the WIP inventory in storage of a part in terms of 

unit-years is a complex function of its demand distribution, its 

production lead time distribution and the inventory policy being used 

at the storage. Even with a given inventory policy and a demand 

distribution, the functional relationship between the average level 

of inventory in storage and the production lead time is still a com­

plicate one. The discussion on the relationship is limited to the 

stochastic production system which has been briefly described in 

Section A-1. The inventory policy of the Finished Piece Parts 

Storage of the production system is a lot size-reorder point with 

backorders allowed. The size of lots for each part is predetermined. 
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The probability of being out of stock is predetermined also for 

each part. The demand distribution of each part is a Poisson 

distribution with a known mean. 

It is possible to calculate the average level of the inventory-

in storage in two different ways. One is by an approximate treat­

ment and the other is by an exact formula. Both ways are well 

described by Hadley and Whitin (1963). 

One key assumption of the approximate treatment is that there is 

never more than a single order outstanding. This assumption simplifies 

the situation a great deal. The treatment ignores the expected 

backorders over time in calculating the average level of on-hand 

inventory. Before presenting the relationship between the production 

lead time and the WIP inventory in storage of a part, the following 

definition of symbols is made. 

Q: Lot size 

r: Reorder point 

D: Yearly mean demand rate 

p(x;X): The demand distribution during unit time. It 
is a Poisson- with mean X. 

f(t): Marginal density function of production lead time 

Mean production lead time 

Standard deviation of production lead time 

h(x): Marginal density function of demand during 
production lead time. h(x) is a discrete 
distribution. 

y: Mean demand during production lead time 
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a: Standard deviation of demand during production 
lead time 

H(X): Complementary cumulative of H(x) 

P : Probability of being out of stock at any 
given point of time 

The average level of the WIP inventory in storage of the part 

in terms of unit-years can be calculated as follows using the 

above symbols: 

(Average WIP in storage in unit-years) 

= J + r - y (k.3) 

where 

CO 

•"out =1-

GO 

= T [ Z X h(x) - rH(r)] (b.k) 
^ x=r 

If the distribution of demand and that of production lead time 

are independent of each other, then 

U = . X (K.5) 

0^ = y . X + Oy . (k.6) 
Jj L 

h(x) = f p(x;Xt) . f(t) dt (b.7) 
0 



www.manaraa.com

lOU 

If h(x) is assumed to be a normal distribution with mean u 

and standard deviation o, then equation U.U can be written as 

P . = T[o * - (r-p) $ (^-^) ] (b.8) 
out vi O JJ 

where *(w) and 4(w) are the density function and the complementary 

cumulative distribution function of the standardized normal distribu­

tion respectively. 

In the exact formula the assumption that there is never more 

than a single order outstanding is relaxed. However the two key 

assun^tions of the exact formula with variable production lead time 

are that the production lead time of each lot is independent of the 

others and that orders do not cross. These two assumptions are 

contradicting each other. The reason why these two assuinptions are 

made simultaneously in the exact formula in spite of their contradic­

tion is that it is very difficult to deal with a model having only 

one of the two assumptions. However, in the real world the interval 

between the placing of orders is usually large enough that there is 

essentially no interaction between orders, to a good approximation, 

the two assumptions can be made simultaneously (Hadley and Whitin, 

19Ô3). 

The average level of the WIP inventory in storage of the part 

in terms of unit-years by exact formula is 

(Average WIP in storage in unit-years) 

=  2  ̂  +  r - v  +  B(Q ,  r )  (k . 9 )  
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where 
OO 

P ^ = % [ Z H(r+l+y) - Z H(r+Q+y+l)] (k.lO) 

and 

Q y=0 y=0 

B(Q,r) = % [ Z y . H(r+l+y) - Z y . H(r+Q+y+l)] (4.11) 
Q y=0 y=0 

Hadley and Whitin derived equation h.9 for the case of a constant 

lead time. In this case h(x) is a Poisson distribution. However 

it is also valid for the case of a variable lead time. In this case 

h(x) is not necessarily a Poisson distribution. The proof of this 

is given in Appendix B. 

If h(x) is assumed to be a normal distribution with mean y 

and standard deviation o, then equations b.lO and 4.11 can be 

rewritten as 

^out = I ["I' - (r-u) * (^) ] 

and 

- ̂  [a - (r+Q-y) $ (^^)] (4.12) 
fei o a 

B(Q,r) = + (r-p)^] $ (^^) - |^r-u) * (^^)} 

- ̂  + (r+Q-y)^ $ - ̂ r+Qrv) * (ZïSzE)} 

(4.13) 

The average level of the WIP inventory in storage of the part 

in terms of $-years by either the approximate treatment or the exact 

formula is 
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(Average WIP in storage in $-years) 

= (Average WIP in storage in unit-years) . 

(U.lU) 

where V_. , represents the final unit dollar value of the part. 
final 

The difference between the approximate treatment and the exact 

formula in calculating the average level of the WIP inventory in 

storage is discussed in a later section. 

3. ftueueing theory and its applicability to the stochastic production 
system 

Since the stochastic production system of this chapter belongs 

to a particular class of queueing system, namely Queueing Networks, 

it is worthwhile to examine the currently existing Queueing Theory 

and its applicability to the problem. Especially one entity of 

main interest is the total waiting time spent by a customer in a 

system of queueing networks. This is so because it has been shown 

that the average level of the WIP inventory of a part in production 

as well as in storage is closely related with its production lead 

time which corresponds to the total waiting time. 

In his article, "Queueing Theory: The State-of-the-Art", 

Rosenshine (1975) has done an extensive survey on the theory of queue 

and its applications. Especially he looked at the recent literature 

of the subject very closely and summarized the current body of the 

theory and its applications in a concise form. One of his conclusions 

based on the survey is that the current knowledge on queueing networks 
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is very limited and the area is wide open. He found that solving 

even simple networks by a rigorous analysis presented a lot of diffi­

culties. He considered approximation solutions the most promising 

general approach to solving queueing networks and pointed out an 

apparent shift in the theory from the rigorous analytical approach to 

approximation analyses and analytic-simulation hybrid methods. 

In his article, "Random Flow in Queueing Networks: A Review 

and Critique", Disney (1975) exclusively reviewed various aspects 

and problems in queueing networks and has done an extensive survey 

on the subject. One of his introductory remarks is "The point is 

that, con^ared to the state-of-the-art in single-server queueing, 

knowledge about multiple server queues is in a rather primitive 

state." He found three basic approaches in solving queueing networks. 

The first one is to study the vector valued process of queueing net­

works. The major impediment in this case is dimensionality. The 

approach requires the tools of linear algebra and matrix theory for 

solving large scale systems of equations. The second one is to 

decompose queueing networks into subnetworks so as to use the wealth 

of known results for the single-server queues. One major problem in 

this case is how to decompose and recombine the subnetworks in such 

a way that the integrality of the networks and the original stochas­

tic properties of the flows in the networks are not destroyed. The 

other problem, which is more basic, is to solve scalar valued non-

Markov processes whose random variables may depend on many other 

random variables in the networks. The third one is to study queueing 
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networks by computer simulation. One question in this case is how 

often to sample the simulated output so as to get nearly independent 

estimates. In the summary of the paper, Disney mentioned two new 

areas which seem to be recent developments. They are l) finding; 

approximate numerical solutions to the steady state equations and 

2) network reduction techniques through the study of the flow graphs 

that are approximately the same as the flow graphs of the original 

network. 

The author has searched through the queueing literature to find 

an analytical model which could be applied to the study of the 

stochastic production system of this chapter. Unfortunately, the 

search was not successful. The only alternative seemed to be computer 

simulation and this is what actually has been done. A more detailed 

discussion on the computer simulation is presented in a later section. 

Before closing this section, two articles by Jackson (1957 

and 1963) deserve attention. Both articles were written with an 

intention to apply queueing theory to job shop type of production sys­

tem. 

In his first article (1957)» the machine shop studied had the 

following features : (l) Each department is a multiserver system where 

servers are arranged parallel and waiting jobs are pooled in a single 

line, (2) the service time distribution of each server of the de­

partment is exponential with a same mean, (3) arrivals at a given 

department come both from other departments in the shop and from 

outside the shop, (k) the arrival distribution from outside to any 



www.manaraa.com

109 

department is Poisson with à given mean, and (5) the probability 

that a finished job from a given department goes to some specified 

department or out of the system is given. 

Jackson proved a theorem which says that as long as the system 

is steady state, it behaves as if its departments were independent 

multiserver queueing systems. The average queue length at each 

department could be acquired very easily. The approach taken in 

arriving at the result was the first one mentioned by Disney. 

In his second article (1963), the jobshop-like queueing system 

investigated had the following features; (l) The service time distribu­

tion of each department is exponential with a mean which varies almost 

arbitrarily with the queue length there, (2) the arrival distribution 

from outside to the system is Poisson with a mean which varies almost 

arbitrarily with the total number of customers already in the system, 

(3) each arrival is assigned a routing which is generated by a speci­

fied routing generation process, and (U) service discipline at each 

machine center is random. 

Jackson proved three theorems in this paper. The first one says 

that if the value of a particularly specified function is strictly 

positive, then a unique equilibrium state probability distribution 

exists for the system. The second one is similar to the first one 

for the case where the immediate injection of a new customer is trig­

gered whenever the total number of customers falls below a specified 

limit, or where a service is deleted if a queue length grows beyond a 
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specified maximum length. The second theorem was extended to cover 

a case where the total number of customers was held fixed. The 

third one is also similar to the first one for the case where the rate 

of customer arrivals is constant. He showed the actual application of 

his theorems for solving couple simple networks in examples. Conçared 

to the previous paper, it seems to be more difficult to obtain average 

queue length at each department. This is much more so as the 

number of departments increases. The approach taken in arriving at 

the results was similar to the one in his previous paper. 

Although the physical characteristics of the two systems which 

Jackson studied are similar to those of the stochastic production 

system, the main difference stems from the probability distributions 

of arrivals and services. To be specific, the arrival distribution 

and the service distribution of the stochastic production system are 

Gamma and Normal respectively. This is the reason why the results of 

Jackson could not be applied to the problem. However, those two 

papers dealt with queueing networks which are very similar to the 

network of the production system of this chapter. 

U. Alternative approach in solving one-server queueing system with 
multiple Poisson inputs and exponential service times 

Ancker and Gafarian (I961) solved a single server queueing 

system for N different types of customers having independent 

Poisson arrivals with rates i = 1, ..., K and exponential 

service times with rates pu, i = 1, ..., N. The service discipline 

was first-come-first-served. There was no limit for the length of 
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queue. A recursion relation was derived for the steady-state proba­

bility of n in queue. They also derived a recursion relation for 

the steady-state probability that some member of a particular class 

is in service and n of any class are in queue. From these rela­

tionships and two moment generating functions, the expected number 

of customers in the system is calculated as follows: 

N X. 

i=l *i 

where L stands for the expected number of customers in the system. 

The same result has been achieved using a different approach. 

The main idea of this approach is to calculate the ratios among moment 

generating functions and use these ratios in finding the expected 

number of customers in the system. This approach seems to be a 

little easier to understand and quicker to arrive at the final 

result. This approach was applied to a multiple server queueing 

system but unfortunately it failed. Since the incoming jobs to a 

production system are usually conçosed of different classes in terms 

of their input rates and service rates, the queueing system with 

heterogeneous inputs is an important type of queueing system for the 

analysis of production systems, particularly for a jobshop type 

production system. Consequently, multiple server case deserves 

attention and it should be studied further. 

Before getting into the details of this approach, the following 

symbols and functions are defined. 
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N: The total nimber of different classes of jobs 
in terms of their input rates and service rates 

p : Steady state probability that n jobs of any 
° class are in the system where n includes the 

job being served if there is any 

p. ; Steady state probability that a job of i 
class is being served and n-1 jobs of any 
class are waiting 

Input rate of the jobs of i class 

Service rate of the jobs of i class 

N 
X Î X — Z A. 

1=1 ^ 

«1= «iT 

z : A real number in the range 0 < z ̂  1 

F.(z): A moment generating function defined as 

00 

p. (z) = E z°P. 
^ n=l " 

F(z): A moment generating function defined as 

By definition. 

00 

F(z) = E z'^P 
n=l ° 

N 
P = S P (n=l,2,...) , 

i=l 
N 
I 6. = 1, and 
i=l ^ 

CO N N 
F(z) = E z* Z P. = Z F.(z). 

n=l i=l i=l ^ 
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The set of steady-state equations•established by the conserva­

tion of flow is 

^11 = ^^0-
1=1 

^i^O ®i ^^il "*• ^i^il' (i=l.•••.») 

(2 )  
N 

XP. 'i,n-l •*• ^i ^ ^/j,n+l " ̂^in * ̂i^in' 
J^-L 

(i=l,...,N, n=2,3,...) (3) 

E P = 1 . (1») 
n=0 ^ 

By suinming both sides of equation 2 over i=l,...,N, 

N 

Similarly, by summing both sides of equation 3 over i=l,... ,N 

for n=2,3,..., respectively, it can be shown that 

N 
"/j.n+l • k=0A.2....) (5) 

J-1 

By summing both sides of equation 5 over n=0,1,2,..., 

N 
XPf. + AF(1) = E %,F (1) . (6) 

j=l J J 



www.manaraa.com

llU 

By multiplying both sides of equation 5 vith for n=0,l,2,.... 

respectively. 

N 
P = Z w, P, (n=0,l,2,...) (5.a) 
n j_2 j J »D+1 

By summing both sides of equation 5»a over n=0,l,2,.... 

N 
XzP- + Xz F(z) = E y. F (z). (7) 
0 j=l J 

Division of equation 6 and 7 with F(l) and F(z) respectively gives 

XP^ ^ F (1) 

F& * ̂  "j Wir • ' 

XzP. H F (z) 

PQ" * "j F(z) • 

F (1) 
If the ratio, , in equation 6.a can be expressed in terms 

of , 6J and A, then P^ can be solved. Likewise if the ratio, 

F,(z) 
A , in equation 7.a can be expressed in terms of y, 6, X ^ ̂ 9 I «Cl UCUl WC XIX UCiiliO ) 3* 

and z, then F(z) can be solved. 

By multiplying both sides of equation 2 with z. 

N 
^i^^O ^i WjZPj2 ̂  AzP^i + w^zP-i. (i=l,...,N) (2.a) 
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Similarly, multiplying both sides of equation 3 with for 

n=2,3,..., respectively, gives 

N 

^i,n-l * ̂i ^ ^i^% ,n+l ~ ^in * ̂i^^n" 
j-1 

(i=l,...,N, n=2,3,...) (3 

After summing both sides of equation 3-a over n=2,3,..., and then 

adding equation 2.a, it can be shown that 

N y. 
X^zPq + AzF.(z) +6. E [Fj(z) - zP^^] 

j=l 

= XF^(z) + y^F^(z). (i=l,...,N) (3 

By rearranging the terms, equation 3.b can be rewritten as 

^i X If w, 
y.F (z) [(— - 1) - — (l - z)] + 6. 2 F (z) 
11 2 V. 1 ,_i z j 

= (1 - z) XPq6^. (i=l,...,N) (3 

Using matrix notation, equation 3.c is rewritten as follows: 
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(~ -l) - -— (l-z) 
z Ut 

N 

(—-1)-Mi-2) ... 
2 V2 

z 

5, 

N (— -l) - ̂ —(l-z) 
'N 

p,F^(z) 

= (l - z)XP 

N 

(8 )  

By setting z=l in equation 8, 

6. N 
F.(l) = — Z U,F,(1). (i=l,...,N) 
1 Pi j=i j j 

N 
Since F(l) = Z F.(l), 

i=l 

F\(l) 

F(l) 

^ i=i "i 

(i=l,...,N) (8.a) 

Equation 8.a is the desired ratio to "be substituted in equation 6.a. 

After substitution and rearranging terms, 
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N X. 
p = 1 - E -i. , (10) 
° i=l 

N 
where E — <1. 

i=l *1 

F.(z) 
The ratio, , for i=l,...,N and j = 1,...,N can he obtained 

from equation 8 and that is 

F.(z) 6^ [y^ + X(l-z)] 

Fj(z) gj + X(l-z)] 
(8.b) 

N 
Since F(z) = i F.(z) , 

i=l ^ 

N F (z) N 6 [v. + X(l-z)] 

N N 
Z 6, n [y. + X(l-z)] 
k=l ^ i=l ^ 

. (j=l,...,N) (8.c) 
r N 
j I [y. + X(l-z)] 
i=l 
i^J 

Equation 8.c is the desired ratio to be substituted in equation T.a. 

By substituting the ratio and then multiplying the right hand side of 

1 
equation T.a with 

N 
Z [y. + X(l-z)] 
i=l ^ 
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! 
where K = ^ 

[ p .  +  A  ( l - z ) ]  

N S 

il 

Now the expected number of jobs in the system, L, is 

L  =  F  ( z )  
z=l 

-^0 &) ' 

K 2 

» xi 
By defining B = Z — , 

i=l ̂ i 

P N X(y +A) 
R -t_Z " " 2 ] 

,1L)' . ^ ̂  "l - (E + >B) 

& - 1)' 
z=l " IT 

Since = 1 - R from equation 10, 
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= R + AB _ 
1 - R 

® X 
\ I \ 

N X. i"l y. 
Z — + i. 
i=l 

(12) 
N X. 

Before closing this section, one paper "by Kotiah and Slater 

(1973) is to be mentioned. They solved a queueing system of two 

servers for two types of customers with different arrival rates 

(X^, i=l,2) and service rates (wu, i=l,2). Their arrival distribution 

and service distribution are independent Poisson and exponential, 

respectively. The service discipline is first-come-first-served. 

Two moment generating functions are defined as follows; 

00 _ 
Y.,(z) = Z z*" , (i=l,2, j=l,2) 
iJ n=2 J" 

œ 
?(z) = r P(n)z*"2 , 

n=2 

where P.^ ^ is the steady state probability that there are n 

customers in the system including a type i customer at server 1 

and type j customer at server 2 and P(n) is the steady state 

probability that there are n customers in the system. By defining 

"ij ' - A - vj - uj) «jUj + SjUj. R = Va^ioa ' Vi ̂aoa 

and X = 1 - z, Y(z) is expressed in terms of X, X^, 6^, y^, 

R, X, P(l), P ô-l' PgO'i' using the condition 0 < Y(z) < 1, 
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10*1 
the ratio of ——•— is obtained at z = z. and the expected number of 

20:1 ° 

customers in the system is obtained. Since the details of their de­

velopment were not given in the paper, the author could not quite 

follow their method, and it has not been cleared to him yet. 

B. Optimum Trade-Off among WIP Inventory, 
Production Orders and Service Rates 

1. Introduction 

The main objective of this section is to find empirical func­

tional relations between the mean and variance of the production 

lead time of each part and the number of production orders to the 

shop and the service rates of machine centers in two hypothesized 

production systems. The two systems are designed in such a way that 

at every machine center the ratio of the average required machine 

hours and the total available machine hours per year is the same. 

Because of this the work assignments among different machine centers 

are well balanced. 

The systems are modeled in GPSS language and simulated. During 

the simulation, the mean and variance of the production lead time of 

each part are observed at various combinations of the number of 

production orders and service rates. In one system the number of 

production orders is decreased gradually by setting aside a portion 

of the total incoming orders to the shop. No change is made on 

service rates. In the other system not only the number of orders is 

decreased, but also the service rates of all machine centers are 
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increased by a fixed rate. The functional relations are obtained by 

regression analysis based on the data collected from the simulation. 

To find an optimum trade-off point among WIP inventory, the 

number of production orders and service centers, a fixed penalty cost 

is assigned to setting aside one percent of the total incoming 

production orders per year and increasing one percent of the initial 

service rates at all machine centers respectively. 

2. Two hypothesized production systems 

The first system which is called system 1 produces 11 different 

parts with 5 machine centers. The number of identical machines at 

each machine center is 2. There is one waiting line in front of 

each machine center and incoming parts are served based on first-come-

first-served discipline. There is no limit to queue length. 

The production sequence as well as the lot size of each part is pre­

determined. The processing time of each part at each machine center 

follows normal distribution. The moving time of each part from one 

center to a subsequent center is also normally distributed. The 

demand of each part occurs at the Finished Piece Parts Storage 

and it follows Poisson distribution. The inventory policy at the 

storage is a lot size-reorder point model. The probability that a 

part is out of stock at any given time is 0.95. The total available 

machine hours per year at each machine is 11,520 where the time unit 

is 10 minutes. This figure is obtained by assuming that there are 

20 working days each month and 8 working hours each day. 
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The second system, which is called system 2, produces 8 different 

parts with 4 machine centers. The number of identical machines at 

each machine center is 1, 1» 2 and 3 for machine centers 1, 2, 3 and 

4, respectively. The other features of the system are the same 

as system 1 except one; in system 1 the incoming parts at a given ma­

chine center are heterogeneous regarding processing time while those 

in system 2 are homogeneous. 

Tables 4.1 and h.2 show the system parameters as well as pro­

duction sequences in both systems. In the tables and 

represent the lot size and the mean demand rate per unit time for 

part i respectively. r̂ (a,b) represents the interarrivai time 

distribution of the production orders to the shop, which is Gamma 

with mean a and standard deviation b. In Table U.l the production 

sequence and processing time of each part are described as j(c,d) 

where the processing time of part i at machine center j in the 

sequence is normally distributed with mean c and standard deviation 

d. In Table k.2 the parameters of processing time are eliminated 

since they are the same at a given machine center. The mean and 

standard deviation of processing time at each center are as follows: 

Machine center 1: N(20,2) 

Machine center 2: N(30,3) 

Machine center 3: N(bO,4) 

Machine center U: N(60,6) 
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Table U.l. The system parameters and the production sequence of 
system 1 (Time unit: 10 minutes) 

\ 
Data 

P^t 
^ 

Lot size, demand, production order, production sequence and 
processing time 

= 3456 = 15 (230, 3.9) 

1(35,3.5), 3(kO,4.0), 2(30,3.0) 

2 = 576 Xg = 2 Fg (288, 12.0) 

1(40,4.0), 2(60,6.0), 3(50,5.0), 5(40,4.0) 

Qg = 2880 X3 = 10 73(288, 5.4) 

1(30,3.0), 2(45,4.5), 5(40,4.0), 3(50,5.0), 4(30,3.0) 

Qj^ = 7600 = 20 r^(384, 4.4) 

1(33,3.3), 5(50,5.0), 4(41,4.1), 3(33,3.3), 5(40,4.0) 

2(34,3.4) 

(L = 1536 ^5 = ® 7^(192, 4.9) 

1(50,5.0), 3(50,5.0), 4(45,4.5), 5(50,5.0), 4(40,4.0) 

2(70,7.0), 5(40,4.0) 

Qg = 384 Xg = 1 rg(384, 19.6) 

1(120,12.0), 4(144,14.4), 5(120,12.0) 

= 192 Xy = 1 r^(l92, 13.9) 

1(20, 2.0), 5(12,1.2), 2(20,2.0), 3(18,1.8), 5(12,1.2) 

4(20,2.0), 3(22,2.2) 

Qg = 864 Xg = 3 rg(288, 9.8) 

1(65,6.5), 3(80,8.0), 4(30,3.0), 2(84, 8.4), 4(37,3.7) 
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Table 4.1 (continued) 

9 (L = 1152 ^9 = 5 rp(230, 6.8) 

1(40,4.0), 4(20,2.0), 3(40,4.0), 5(22,2.2), 4(20,2.0) 

2(30,3.0) 

10 *10 = 1536 

1(30,3.0), 
^lO ' t 

4(20,2.0), 

r^Q(384, 9.8) 

5(30,3.0), 2(45,4.5), 3(25,2.5) 

11 = 329 

1(60,6.0), 

All = 2 

2(67,6.7), 

r^^(l65, 9.1) 

3(67,6.7), 4(67,6.7), 5(67.6.7) 

Moving time of each part: N(24, 2.4) 
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Table U.2. The system parameters and the production sequence of 
system 2 (Time unit: 10 minutes) 

\— 
Data 

P^t 
Lot size, demand, production order, production sequence and 
processing time 

= lUo = 10 r^fikk.s.S) 

2, 3, 1 

Q = 1152 Xg = 7 T ^ { I 6 5 ,  h . 9 )  

1, 3, k 

= 628 A3 = 3 8.U) 

1. 3, 1, h 

Q|^ = U608 = 16 r^(288, 4.2) 

3, 1, 3, k 

Qg = 5120 X^ = 20 (256, 3.6) 

1, 3, h ,  3 ,  1. h  

Qg = 230 Xg = 1 rg(230, 15.2) 

3, k, 1, 2, 3, h, 2 

= 1646 Xy = 5 r^(329, 8.1) 

1, 2, 3, 4, 1, 2, 4, 2 

8 Qg = 5236 Xg = 15 rg(3U9, U.8) 

1*, 3, 2, 1, U, 3, 2, 1, 2 

Moving time of each part: N(20, 2.0) 
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3. SPSS simulation and results 

The GPSS model used for simulating the two hypothesized systems 

is fairly simple. The whole production sequence of a part is 

modeled in one independent segment. The arrival of job orders for 

the part is simulated by a GENERATE block in its segment. A 

transaction generated by the block, which is equivalent to a single 

lot, goes to a QUEUE block which simulates the waiting line in 

front of the first machine center in the production sequence of the 

part. When its turn comes, it moves into an ENTER block which simu­

lates occupying one machine of the center by the lot. Without any 

delay the transaction goes to a DEPART block and then it goes to an 

ADVANCE block where it spends a time period which is equivalent to 

the processing time of the lot. The movement into the ENTER block 

by the transaction increases the number of occupied machines in the 

center by one. On the other hand the movement into the DEPART block 

by the transaction decreases the number of waiting jobs in the queue 

by one. When the transaction comes out of the ADVANCE block it 

goes to the LEAVE block to decrease the number of occupied machines 

by one. Then it moves to another ADVANCE block and spends a time 

period for moving the lot to a subsequent machine center. The trans­

action keeps moving through a sequence of blocks which is similar to 

the one just described until it arrives at the Finished Piece Parts 

Storage. Before it is exterminated by moving into a TERMINATE 

block, its total residence time in the segment, which is 

equivalent to the production lead time of the lot, is saved by a 
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MSAVEVALUE block. The sample mean and variance are printed out "by 

a TABULATE block. 

There is another model segment other than those for individual 

parts. This segment is a timer segment which controls the total 

time period of the simulation. 

In each run a RESET card is used to eliminate the effects 

of transient period on stationary period. Also a RMULT card is used 

to provide a different seed value to a random number generator. 

The transient period is decided by observing the variation of 

production lead times of individual parts from a couple of test 

runs. By considering the cost of computer runs and the results from 

the test runs, the transient period is determined to be one year. 

This is equivalent to 11520 time units in the simulation model where 

the time unit is 10 minutes. After eliminating the statistics 

gathered during the transient period, the model is run one more year 

for system 1 and two more years for system 2 to obtain required data. 

Figure U.l shows the model segment of part 1 and the timer 

segment of system 1. The model segments for other parts are similar 

to Figure U.l. 

In Figure U.l V$ARR10 in the GENERATE block is the inter-

arrival time of production orders for part 1. ARRIO is the name of 

a variable which is defined as U*FN1 + 230. FNl is a continuous 

GPSS function which approximates the cumulative of standard normal 

distribution. Although the interarrivai time is Gamma distribution, 

it is approximated by normal distribution in the model. Hence FNl is 

multiplied by the standard deviation and added by the mean of the 
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www.manaraa.com

130 

interarrivai time. Since the number to be multiplied and added to 

a function is limited to an integer value in GPSS, the standard 

deviation and the mean are rounded off to integer values. 

V$MAC11, V$MAC13 and V$MAC12 and V$MOVE in ADVANCE blocks are the 

processing time and moving time of part 1 respectively. Their 

values are obtained from four different variables which are defined 

similarly to ARRIO. 

Before presenting the results of the simulation, tvo multipliers 

and Xg, which are used as two independent variables in the simula­

tion as well as in the regression analysis, are introduced. X^ 

represents the percentage to be actually processed in the shop out of 

the total incoming production orders per year. Hence 1.0 - X^ is the 

percentage to be set aside. X^ represents the ratio of the actual 

service rates to the initial service rates at all machine centers. 

In system 1 the production lead time of each part is observed 

as 1/X^ changes from 1.0 to 1.5 with interval 0.05 while X^ is 

set equal to 1.0. In system 2 observations are made at IT different 

combinations of X^ and X^. The combinations are selected in such a 

way that any interaction of X^ and X^ can be identified easily in 

the later regression analysis. Figure h.2 shows the actual 

combinations of X^ and X^. 

Tables k . 3  and k . h  show the simulation results for system 1 and 

system 2 respectively. In both tables three numbers are presented for 

a given part and a given combination of X^ and Xg. The first and 

the second are the sample mean and the sangle standard deviation of 

the production lead time respectively. The last number is sample size. 
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l.U 1/X. 1.0 1.2 1.3 1.5 1.1 

1.0 

1.1 

1.2 

1.3 
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Figure U.2. The combinations of and X^ for system 2 
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Table U.3. The simulation results for system 1 (X^ = l.o) 

1/X^ 

PartsV 1.00 1.05 1.10 1.15 . 1.20 1.25 

1 361.43 
55.27 
101 

294.75 
32.78 

48 

256.17 
40.98 

46 

257.77 
45.68 

43 

231.20 
36.01 

4l 

226.20 
37.67 

40 

2 518.54 
53.68 

80 

434.72 
46.89 

39 

385.89 
^54.26 

37 

363.18 
37.28 

34 

353.18 
41.66 

33 

344.38 
45.59 

32 

3 622.55 
69.06 

80 

501.79 
60.86 

39 

439.19 
59.96 

36 

453.89 
51.27 

35 

406.70 
62.20 

33 

411.13 
53.46 

31 

k 662.80 
55.57 

60 

559.24 
82.52 

29 

534.70 
64.22 

27 

577.96 
59.22 

26 

469.12 
51.01 

26 

493.83 
58.08 

23 

5 885.19 
70.35 
119 

761.91 
76.29 

58 

704.51 
66.49 

55 

673.21 
69.20 

52 

653.63 
61.57 

51 

631.54 
53.85 

48 

6 571.47 
44.95 

60 

505.14 
38.22 

28 

496.22 
36.94 

27 

48].92 
33.39 

26 

490.44 
40.33 

25 

486.65 
32.48 

24 

7 715.24 
82.67 
121 

580.54 
77.99 

57 

544.60 
87.35 

55 

501.85 
78.47 

52 

449.53 
69.08 

51 

424.00 
50.58 

49 

8 631.24 
56.90 

80 

568.97 
55.95 

38 

532.84 
^3.55 

37 

504.32 
52.55 

34 

473.39 
4l.8l 

33 

492.28 
48.76 

32 

9 661.09 
61.52 

99 

576.74 
67.16 

47 

509.93 
79.29 

46 

489.95 
47.68 

43 

451.51 
45.71 

43 

455.20 
68.47 

40 

10 548.87 
45.21 

60 

466.31 
61.13 

29 

383.64 
49.91 

28 

464.59 
79.44 

27 

358.36 
45.60 

25 

360.08 
59.66 

24 

11 696.22 
51.48 
140 

603.75 
48.98 

67 

562.68 
51.97 

63 

544.56 
45.16 

62 

517.76 
41.00 

58 

517.68 
46.04 

57 
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Table U.3. (continued) 

1.30 1.35 l.kO 1.45 1.50 

230.26 
43.14 

39 

329.06 
33.09 

31 

377.35 
40.10 

31 

461.83 
46.63 

23 

618.63 
51.97 

46 

482.00 
40.69 

23 

415.83 
50.63 

46 

465.23 
37.74 

31 

423.18 
56.16 

39 

347.26 
54.92 

23 

501.00 
4o.8o 

54 

207.43 
27.82 

37 

348.34 
46.50 

30 

386.73 
58.32 

30 

471.64 
52.58 

22 

581.42 
56.33 

45 

480.95 
35.86 

22 

402.53 
62.46 

45 

468.17 
41.63 

30 

394.24 
64.55 

38 

377.68 
62.48 

22 

491.04 
41.78 

53 

233.19 
36.11 

36 

343.11 
33.52 

28 

385.31 
4l.l6 

29 

455.00 
38.52 

21 

595.42 
58.20 

43 

457.71 
21.00 

21 

392.00 
52.69 

43 

458.75 
46.38 

28 

398.56 
53.31 

36 

336.38 
42.48 

21 

483.25 
31.89 

51 

214.32 
35.97 

34 

329.67 
35.91 

27 

389.39 
44.58 

28 

434.70 
42.32 

20 

576.66 
62.26 

4i 

472.71 
34.45 

21 

385.24 
49.67 

. 42 

461.79 
42.81 

28 

387.03 
50.84 

35 

327.25 
37.95 

20 

484.00 
37.67 

48 

198.64 
34.95 

33 

329.26 
37.57 

27 

366.85 
4l.l8 

27 

416.15 
30.93 

20 

565.20 
44.74 

40 

464.50 
26.11 

20 

380.00 
48.16 

41 

448.37 
37.53 

27 

374.50 
44.53 

34 

313.65 
40.93 

20 

477.70 
42.01 

47 
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Table k.U. The simulation results for system 2 

Ni/x J 

X ' Parts 

;) 

(1.0,1.0) (1.1,1.0) (1.2,1.0) (1.3,1.0) (1.4,1.0) (1.5,1.0) 

1 294.68 
42.13 
l6l 

229.79 
35.31 
145 

214.35 
32.56 
135 

-203.56 
34.81 
124 

190.20 
27.75 
ll4 

186,99 
24 .56 
107 

2 335.59 
38.13 
l4p 

244.48 
33.00 

128 

233.79 
33.38 

117 

224.70 
24.25 

107 

219.52 
24.75 

102 

210.02 
22.44 

94 

3 418.82 
44.75 
110 

311.52 
35.75 
100 

288.41 
37.75 

93 

273/78 
26.69 

85 

271.65 
30.56 

79 

263.84 
27.06 

74 

h 588.49 
55.50 

80 

424.04 
46.25 

73 

4o6.46 
47.81 

67 

387.68 
34.50 

62 

376.47 
28.81 

58 

376.92 
37.94 

53 

5 810.21 
71.31 

90 

606.95 
70.50 

82 

563.05 
64.13 

75 

541.52 
46.56 

70 

526.27 
46.13 

64 

510.05 
33.38 

60 

6 797.82 
66.19 
101 

587.11 
54.25 

91 

564.56 
57.19 

85 

537.64 
51.44 

78 

519.53 
44.94 

70 

509.78 
41.56 
67 

7 891.84 
67.00 

70 

647.78 
56.56 

63 

622.14 
53.63 

58 

589.89 
39.56 

54 

581.14 
56.44 

50 

55^.66 
47.06 

47 

8 976.02 
76.31 

66 

745.85 
69.81 

60 

727.44 
61.69 

54 

676.67 
68.56 

51 

648.91 
57.13 

47 

614.70 
35.38 

44 
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Table 4.4. (continued) 

PartSy^ 

1 
^2) 
(1.0,1.1) (1.1,1.1) (1.2,1.1) (1.3,1.1) (1.0,1.2) (1.1,1.2) 

1 213.33 
32.81 
162 

190.44 
28.25 
147 

188.24 
27.31 
134 • 

176.13 
22.81 
124 

190.53 
29.19 

161 

176.80 
26.75 
146 

2 229.64 
29.25 
l40 

214.83 
28.63 

128 

206.20 . 
23.19 
117 

199.34 
19.44 

107 

202.50 
24.44 
139 

195.26 
22.25 

128 

3 289.53 
37.44 
110 

270.78 
28.69 
101 

256.01 
26.38 

93 

241.58 
20.69 

85 

258.96 
28.44 
111 

240.70 
21.13 
100 

4 405.42 
43.56 

80 

375.79 
34.94 

73 

356.85 
32.19 

66 

353.02 
32.88 

52 

354.02 
32.00 

81 

35^.82 
33.94 

73 

5 580.80 
56.44 

91 

523.02 
42.88 

81 

493.01 
34,56 

75 

480:77 
26.44 

70 

505.50 
42 .38 

80 

473.45 
37.44 

82 

6 555.44 
48.25 
idO 

509.77 
59.74 

91 

499:76 
44 .31 

83 

478.36 
33.44 

76 

492.32 
44.81 

99 

480.79 
45.56 

92 

7 621.23 
59.38 

71 

566.19 
49.25 

63 

537.34 
45.81 

59 

525.13 
45.56 

54 

539.40 
44.75 

70 

522.63 
48.38 

63 

8 71k.97 
62.81 

66 

648.32 
52.63 

60 

618.35 
55.00 

55 

587.32 
39.00 

50 

628.15 
48.00 

66 

608.68 
43.50 

60 
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Table U.U. (continued) 

Parts^ 

f 
2) 

(1.2,1.2) (1.0,1.3) (1.1,1.3) (1.0,1.4) (1.0,1.5) 

1 173.96 168.62 162.36 152.30 149.51 
21.63 23.31 20.56 19.25 15.41 
134 160 147 ' 161 161 

2 188.55 152.01 181.20 170.39 163.81 
18.56 19.25 20.94 15.99 14.92 
117 l4l 127 l4l l40 

3 234.73 234.38 225.97 216.41 202.55 
20.56 22.56 20.38 20.81 17.88 
91 111 101 111 110 

4 327.97 327.86 314.62 304.22 286.60 
24.38 27.13 26.25 22.13 20.63 

66 80 73 80 81 

5 459.20 451.61 433.73 416.99 389.88 
28.75 37.06 29.50 21.06 22.13 

75 90 82 80 90 

6 453.90 453.00 434.96 415.18 391.14 
36.69 40.63 34.44 32.13 29.31 

82 100 91 102 99 

T 506.69 498.86 479.84 451.56 432.37 
46.31 40.38 34.69 29.56 34.06 

59 70 64 70 71 

8 562.75 567.32 541.52 516.20 486.92 
33.94 39.81 44.44 39.44 33.19 

55 66 60 66 66 
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From Table 4.3 and Table k,k it can be seen that the mean of 

production lead time of each part decreases at a faster rate at the 

beginning and at a slower rate later as l/X^ increases at a 

given Xg or vice versa. In Table U.U the response of the lead 

time seems to be more sensitive to the changes of Xg than that 

of 1/X^. The standard deviation of the lead time of each part also 

decreases as l/X^ increases at a given Xg or vice versa. 

However, its change is more irregular corçared to the mean. 

U. Regression analysis and results 

Many different types of curves were tested to find the best 

one by fitting curves to the data obtained from the simulation study. 

Based on the results from the test fittings, the following curves 

are seletted as the empirical functional relations of interest. 

2 
System 1: in + a^X^ + agX^ 

"I t = + *1 

X 
System 2: In W;,, = ^2 + 3^ 

" «I? = *0 + *1 XÏ + % 

Where a , ...» d are regression coefficients and y__ and <y-m 
0 c lil XiX 

are the mean and variance of the production lead time of each part 

respectively. 
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In estimating the regression coefficients, for both systems 

the regression on the variance is wei^ted by the sample size of 

each part. However, the regression on the mean is weighted only for 

system 2 by the sample variance of each part. 

Generally speaking, the fittings are reasonably good. The 

plots of residuals against at a given and at a given 

X^ are flat and there is no noticeable trend. Also the magnitude 

of the variance of residuals of each part is comparable to each 

other. The value of R-square is bigger than 905? for most of the parts 

and this justifies good fittings. 

The estimated regression coefficients are presented in Tables 

U.5 and U.6. For each part the first row shows the coefficients of 

mean and the second row shows those of variance. 

Figures 4.3 and it.U show the sanç>le mean and its regression 

line, and the sample variance and its regression line respectively 

for parts 1 and 2 of system 1. 

Figure U.5 shows the sample mean and its regression line for 

part 6 of system 2 when l/X^ changes with Xg = 1.0 and when 

Xg changes with 1/X^ =1.0. 

Figure k.6 shows the sample variance and its regression line 

for part 6 of system 2 when l/X^ changes with X^ = 1.0 and 

when Xg changes with 1/X^ = 1.0. 
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Table U.5. The estimated regression coefficients for system 1 

"Coefficients 

Parts 

^0' ̂ 1' *2 
to' 

7.57262 
9.22089 

8.95661 
9.h99hk 

8.64820 
10.35096 

6.12187 
10.65452 

7.56174 
10.0041 

7.10126 
9.28840 

7.82413 
11.31598 

7.65484 
9.41209 

6.76243 
9.36623 

6.73226 
8.60464 

7.76452 
9.25840 

-6.56323 
-1.52527 

-8.60696 
-1.62078 

-7.63679 
-1.95263 

-0.95^06 
-2.25278 

-3.83496 
-1.44604 

-2.67679 
-1.76790 

-5.91787 
-2.42913 

-4.44339 
-1.41525 

-3.14228 
-1.02779 

-3.33257 
-0.60178 

-4.63841 
-1.38362 

4.83975 

5.87359 

5.37906 

1.28850 

3.03228 

1.88665 

4.64869 

3.22596 

2.85753 

2.86792 

3.39507 
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Table It.6. The estimated regression coefficients for system 2 

\ 
Coefficients 

\ Parts, 

^0' ̂ 1' 

15.77057 
13.33526 

17.84969 
13.31772 

16.86170 
13.58264 

18.58838 
13.93402 

16.88387 
17.41273 

18.16870 
13.30838 

19.60497 
12.41749 

13.73197 
14 .56079 

-12.83606 
2.04304 

-15.20100 
- 2.20303 

-14.81526 
- 2.29820 

-16.47582 
- 2.03590 

-14.22046 
- 3.31800 

-15.17553 
- 1.80347 

-16.73217 
- 1.25870 

- 9.55318 
• 2.28710 

-13.11142 
- 3-86646 

-15.10459 
3.90060 

-12.95179 
- 3.82346 

-14.21390 
- 4.01708 

-12.13968 
- 5.46836 

.13.83052 
- 1.22319 

-15.32274 
- 2.89126 

- 9.25442 
- 3.62400 

3.41709 

4.20397 

4.47626 

4.96530 

4.24436 

4.37391 

4.80386 

2.60122 

3.99692 

4.61533 

3.81567 

4.09702 

3.47859 

4.03700 

4.43318 

2.83992 

8.42583 

9.40756 

8.61164 

9.36883 

8.42073 

9.06320 

9.97074 

6.48355 
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Figure 4.3. The sample mean and its regression line for 
part 1 and 2 of system 1 



www.manaraa.com

Ik2 

Sas^le variance, 
of pâTb 1 

3500 

Sample v^iance 
of part 2 3000 1 ! 

Regression line of part 2 2500 

A 2000" 

a> p 1500.. § 
S > 

Regression line of part 1 

1.45 1.5 1.2 

^ 1/X. 

Figure 4.4. The sample variance and its regression line 
for parts 1 and 2 of system 1 
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Figure lt.5. The sample mean and its regression line 
for part 6 of system 2 
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Figure 1+.6. The sample variance and its regression line 
for part 6 of system 2 
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5. Normality assumption for lead time demand. 

Although the mean and variance of the production lead time of 

each part and their functional relations vith and Xg were 

obtained in previous sections, the distribution of production time 

vas not investigated thoroughly. As a crude method of finding the 

distribution, five sets of samples vere drawn randomly and their 

histograms were constructed. Three of them were reasonably close 

to normal. But two of them were a little bit skewed to the left. 

Leaving the actual distribution of the production lead time as a 

further research, it will be assumed to be normal. Stanley 

(1968) investigated the production lead times of multiple parts in 

a shop which is very similar to the two hypothesized systems of this 

chapter. He found that the production lead times were normal. His 

finding is another justification for the above assumption. 

Danish (1972) studied the distribution of lead time demand 

for various combinations of different lead time distributions and 

demand distributions. One of the combinations was that the distri­

bution of the demand was Poisson and that of lead time was normal, 

which is the case of interest in this section. He concluded that 

the distribution of lead time demand was normal. In arriving at 

his conclusion, he discretized normal distribution by using an 

interval t - 1/2 and t + 1/2 for t=l,2,...,m where m lies 

beyond the + 3 Then he expressed the probability function 

of lead time demand as a convolution of two probability functions 

of discrete random variables. He plotted the convoluted probability 
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function by means of a computer program for arbitrary values of 

U , a and X which is the mean of the Poisson distribution. 
LiT LT 

The plot was well matched with the theoretical normal distribution 

2 2 
with mean X « and variance X + X . . Danish's 

conclusion is the justification for the normality assumption for 

lead time demand in systems 1 and 2. 

6. Optimum trade-off among WIP inventory, the number of production 
orders and service rates 

It has been seen that the mean and variance of production lead 

time of each part decrease as l/X^ increases (or decreases) 

at a given X^, or X^ increases at a given 1/X^, or both 

increase. As the mean of each part decreases, so does its average 

WIP in production. Particularly, when X^ decreases the average 

WIP in production decreases due to the decrement of mean as well .as 

the decrement of yearly demand of each part (see equation k.l). 

Similarly as the mean and variance of each part decrease, so does 

its average WIP inventory in storage. By looking at equation U.9, 

this is not obvious. However the average WIP inventory of each 

part was calculated from equations 4.9, 4.12 and 4.13 using a 

FORTRAN program and its decrease was indicated. Equations 4.12 and 

4.13 were used in the calculation because of the normality assumption 

for lead time demand which has been discussed in the /previous section. 

The resulting value of B(Q,r) for each part was approximately 

one percent or less of the average WIP inventory in storage. Also the 

value of the second term in equation 4.12 was almost negligible. 
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Consequently the average WIP inventory of each part could be cal­

culated from equations U.3 and U.8 of the approximate treatment and 

the resulting error would "be negligible for practical purposes. 

Figure U.T shows the total average WIP inventory in produc­

tion of all 11 parts of system 1 and its counterpart in storage 

as decreases from 1.0 to 0.5» Note that the decrease of 

Figure U.8 shows the total average WIP inventory in produc­

tion of all 8 parts of system 2 and its counterpart in storage as 

decreases from 1.0 to 0.5 with Xg = 1.0 and as X^ increases 

from 1.0 to 1.5 with X^ = 1.0. 

It is possible to draw a family of curves similar to those in 

Figures U.7 add 14-.8 by changing X^ at various values of Xg and 

vice versa. In fact all the possible curves would compose WIP 

inventory surfaces in three dimensional space. However these sur­

faces have not been obtained in this research. 

In figures It.7 and U.8 the response of the WIP inventory in 

production is much more sensitive than that of the WIP inventory in 

storage. Also the average inventory level in production is much 

bigger than that in storage, especially when the value of X^ 

or Xg is near 1.0. 

If the decrease of X^ and the increase of Xg incur some 

costs, it is possible to locate an optimum trade-off point among the 

total WIP inventory (the total in production plus the total in 

from 1.0 to 0.5 is equivalent to the increase of from 1.0 

to 2.0 
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Figure 4.7. Total WIP inventory in production and storage 
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storage), and X^, which minimizes inventory holding cost 

plus the costs associated with X^ and X^. By providing the 

following fictitious data the optimum points for systems 1 and 2 are 

obtained. 

System 1: V^^itial parts = $30/unit 

Vfinai for all parts = $60/unit 

I (inventory carrying charge) =0.2 

The cost for decreasing X^ = $5,700/one percent 

System 2: for all parts = $30/unit 

V_ _ for all parts = $60/unit 
final 

I (inventory carrying charge) =0.2 

The cost for decreasing X^ = $6,000/one percent 

The cost for increasing Xg = $6000/one percent 

Different values could he assigned to Vfinai 

and I for each part of the systems. For simplicity the same value 

is assigned to each of them for each part. For system 2 two optimum 

points are located; the optimum value of X^ with Xg = 1.0 and the 

optimum value of Xg with X^ = 1.0. It is more desirable to locate 

the optimum pair of X^ and X^ when both of them change. How­

ever this has not been done. 

Figures k.9  and 4.10 show the inventory holding cost plus the 

costs associated with X^ and Xg and optimum points for system 1 

and for system 2 respectively. 
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Figure It.9» Total cost curve for system 1 
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Figure b.lO. Total cost curve for system 2 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. Deterministic Case 

Althou^ the model developed in Chapter III combines the deci­

sion on inventory and the decision on scheduling, it is limited to 

a case where the following conditions are met;, (l) the total number 

of different parts is large, (2) the yearly demand of each part is 

large, (3) the yearly production cycle of each machine center is 

bounded by an upper limit and restricted to an integer, (4) the dollar 

value of each part at any production stage is known, and (5) the 

available machine hours are the only constraint to production schedul­

ing. In addition, the model involves approximation and the applica­

tion of the model requires a tedious computation routine which could 

be computerized. Hence when one wants to use the model, its strong 

and weak points should be evaluated. 

Above all, the real intention of developing the model is to 

calculate the WIP inventory of a multi-stage inventory/production 

system by using the concept of cumulative production and demand. 

The concept is workable even though improvement for the application 

of the concept is desirable at this stage. 

The model is used as a vehicle to link the problems of inventory 

and machine replacement decisions in the later part of Chapter III. 

A simplifying assumotion which could be challenged (Section D-2) 

virtually ignores the basic concept involved in the earlier development. 
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There should be a better way to link these problems without defying 

the basic concept. 

Generally speaking, the amount of WIP inventory between machine 

center i and machine center 1 + 1 decreases as and 

increase simultaneously. However, this will increase the number of 

setups at both machine centers and the total production cost will 

be Increased. An alternative to avoid this situation is to make 

\+l ^ integer multiple of N^. Then will be 1 and the 

distance to be used in calculating the installation Inventory 

will be the full distance between the demand line and one apex of 

the actual réduction line of machine center 1 + 1. But the 

full distance depends on and the savings in Inventory holding 

cost by making an Integer multiple of depends on the 

magnitude of Also the change on will affect the inven­

tory between machine center 1 + 1 and machine center 1 + 2. In 

terms of the total production cost which includes the setup cost 

as one component of it, the effect of making an integer 

multiple of on the total production is a complicated one. 

Because of this reason making the production cycle of machine 

center 1 + 1 an Integer multiple of that of machine center 1 for 

1-2, 3, ..., M does not guarantee the minimization of the total 

production cost. The only way to find an optimum set of N^, N^, . ., 

is to go through an efficient enumeration procedure like I^mamic 

programming or Branch and Bound technique. 
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As mentioned "before there is tig room for improvement and 

further research in the model. The following represents iniprove-

ments and further research necessary in the model: 

(1) It is desirable to take into account the raw material 

inventory and finished product inventory in the model. 

The consideration of these two inventories will increase 

the number of decision variables and will not change 

the model materially. 

(2) In the model the number of containers used at each 

machine center is treated as a dependent variable. 

No cost reflecting the economy of scale is assigned to 

this variable. The model would be more realistic 

if the number of containers was considered another inde­

pendent decision varaible with an associated cost. 

(3) It is desirable to computerize the computational routine 

of the branch and bound algorithm. Also the calculation 

of the adverse minimum for machine replacement can be 

done by computer. 

(4) The inventory which is tied up in transit is ignored 

in the model because it is constant. However, it is 

possible to include that in the model as another inde­

pendent decision variable. Since the amount of the 



www.manaraa.com

155 

inventory tied up in transit is significant in the 

real world, the inclusion should he investigated. 

(5) When replacing a machine, it is assumed that all the 

machines at a given machine center are replaced at 

the same point in time. However, it seems more logical 

to replace x old machines with y new machines where 

X and y are non-negative integers. There is theoreti­

cal difficulty associated with this generalization. 

(6) The planning horizon of the model is infinite. Atten­

tion should be given to the case where the planning 

horizon is finite. 

(7) It might be very interesting attempt to apply the 

concept of cumulative production and demand to the case 

where the rate of production and the rate of demand are 

both random variables having known distributions. 

B. Stochastic Case 

While the WIP inventory of the deterministic case depends 

on the production cycle of each machine center, it depends on 

the production lead time of each part in the stochastic case. 

There is a definite functional relationship between the level of 

congesticm in the production floor and the production lead time. 

The mean and variance of the production lead time decreases 

rapidly at the beginning and then the rate of decrement declines 
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as the level of congestion goes down. This relationship is used 

to find an optimum level of congestion in terms of minimizing 

inventory holding cost and penalty cost for lowering the level 

of congestion. 

The amount of WIP inventory tied up in the production floor 

is much larger than that in storage. Also, the response of the 

average level of inventory to the level of congestion is much 

more sensitive for the WIP inventory in the production floor 

than that in storage. This means that a sizable savings will 

occur in the WIP inventory in the production floor by decreasing 

the level of congestion. 

In the study of the stochastic production system identify­

ing the functional relationship between the level of congestion 

and the production lead time is the prime objective. However, 

establishing a procedure to find an optimum level of congestion 

is another main objective. The procedure used in Chapter IV is 

only one way to find an optimum level of congestion. Other 

methods which could be more efficient should be investigated. 

As in the deterministic case, there are many questions left 

unanswered and areas which need to be investigated further. 

(1) It is desirable to consider both the raw material in­

ventory and finished product inventory in finding an 

optimum level of congestion and WIP inventory. 

(2) The batch size is predetermined in the model to simplify 
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the situation. However, the batch size is one 

inçortant decision variable and hence its effect on 

the production lead time should be identified. 

The distribution of production lead time as well as 

the distribution of lead time demand should be identified. 

Most manufacturing companies operate on multiple shifts. 

The model would be more realistic if the aspect of 

multiple shifts was included in the computer simulation. 

A conglete picture of the level of the WIP inventory 

as a function of and has not been "obtained. 

Also a complete picture of the inventory holding cost 

has not been acquired. 

It is possible to establish optimum machine replacement 

policy by assuming that the available machine hours 

decrease via more frequent machine breakdowns as 

the machine gets older. 

The results of Jackson's paper (1957) can be used to 

develop an analytical functional relationship between 

the level of congestion and the production lead time. 

The effect of the batch size of each part on the pro­

duction lead time can be identified analytically. 

Hence the batch size can be handled as an independent 
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decision variable in developing a cost model. Also 

it is possible to establish optimum machine replacement 

policy based on an extended cost model. Such develop­

ment vill be important to clarifying questions and 

problems raised in this research. 
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VIII. APPENDIX A: THE VALIDITY OP THE DEVELOPMENT IN SECTION III-A-6 

In Figure 3.12 the actual production line of machine center 

i + 1 should be completely covered by the available production 

line at machine center i + 1 after the latter has been shifted to 

the rig^t horizontally by EF. However, it may be possible that a 

certain portion of the available production line is crossed over by 

the actual production line by the shift. This situation can occur if 

*1+1 »(?!+! -

"1 ' •' ^+1 

Figure A.l shows the pseudo available and actual production 

lines of machine center i + 1 in Figure 3.12 before the latter is 

shifted by CG. In Figure A.l, L^ = ̂  = t . and 

L. , = ̂  = t . a. for some t (0 < t < l). C , C , ..., C 
i+x 1 X d Pi+i 

are such horizontal distances that 0 < C, = L..^ - £,.L. < L., — 1 1+1 1 1 1 

0 < Cg = 2.1.^+1 - 0 < 

• -1 - 'Si+i .L. = 0 where 

> S._, • •., Ag e (l,2,..., a. ) and S, ^ î, i ^ _i 
1 ^ Pi+1 ^ *i+l 

< £ = a.. The place which should be examined for the crossing 
- h+1 ^ 

due to the rightward shift by EF in Figure 3.12 is where the value 

of C^ is minimum. 
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Cl 
Since = t . and = t . T = "i ' * ^i+1' 

C Cg  ̂ _ 1 

= 2.a. - Ag . 6i+i, ' = (*i+l - • «i ' tgi+i-l'*i+l' 

^®i+l ̂ = 0. Because and are relatively prime integers, 

c, c °s 
—, —, ...» — will take a unique value from (0,1, 2 , . . . ,  

C . 
Then the minimum, . , of them is 1 and C 

t min . 6^+^ 

^i+1 • "'i 

Figure A.2 shows a portion of Figure A.l where the value of 

is minimum. In Figure A.2, V is one point of the available 

production line at machine center i + 1, which can cross over the 

actual production line at W. The distance between V and W is 

C _ (1 + ̂  - ̂ ) + Ef' vhere 
1+1 î 

^'= < lathe 

2 . n. 2 . n 
integer part of (- . When (- ) is integer itself, 

*1+1 *i+l 

, 2 . n 
K. = (— ) - 1. After the available production line has been 
^ Gi+1 

shifted leftward by CG in Figure 3.12, the total distance between 
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i+1 

EF 

'i+1 

/ X • .• 
min 1+1 

min Nj+i'Oi:. 

Figure A. 2. A portion of Figure A.l where the value of is minimum 

D on I 
V and W is C . (l + ̂ + CG + EF 

^i+1 ^i 

T D ' = (i - —) + EF . As long as this distance is bigger than 
"i+1 • "i ^i 

or equal to EF, no crossing occurs. Otherwise, crossing occurs and 

the development in Section III-A-6 will not be valid. Consequently, 

the necessary condition for the validity of the development is 
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^ (1 - ̂ ) + EF* > EF . 
®i+l * "i ^ 

n. 1 
By using the relation K - K < . * ô" * above condition 

1 1 Pi+i 

can be reduced to 

n. > 
^i+1 ^^^i+1 " ̂i^ 

/ 
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IX. APPENDIX B; THE PROOF OF EQUATION h.9  F0« AN ARBITRARY LEAD TIME 
DISTRIBUTION 

In addition to the symbols defined in Section A-2-b of Chapter 

IV, the following symbols are defined. 

Y (x): State probability that on hand inventory at any time t 
is X (0 £ X £ r + Q) 

Y (y): State probability that backorders at any time t 
are y (O £ y) 

B(Q,r): Expected number of backorders at any time t 

D(Q,r): Expected number of on hand inventory at any time t 

It is possible to express Y^(x) and Ygfy) in terms of H(x) 

as follows: 

= — T. h(r + j - x) = — [H(r + 1 - x) - H(r + Q + 1 - x)]. 

(O < X < r) (A.l) 

= X Z h(r + j - x) = ̂  [l - H(r + Q + 1 - x)] 
j=x-r 

( r  +  l < x < r  +  Q )  (A.2) 

Tgfy) ~ Q ^ h{r + j + y) = ̂  [H(r + 1 + y) - H(r + Q + y + l)] 

(0 £ y) (A.3) 
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where 

Peut' y=0 

1 
I [ Z H(r + 1 + y) 

y=0 

00 

Z H(r + Q + y + 1)]. 
y=0 

(A.U) 

Then B(Q,r) is 

B(Q,r) = E yY (y) = § Z y[H(r + 1 + y) - H(r + Q + y + l)] 
y=0 y=0 

= r [ E (w - r - l) H(w) - z (w-r-Q-l) H(w)]. 
w=r+l w=r+Q+l 

(A.5) 

The average WIP in storage in unit-years, D(Q,r), is 

r+Q r r+Q 
D(Q,r) = E xy^(x) = E xï,(x) + E xW (x) 

x=0 x=0 x=r+l 

1 

= — E x[H(r + 1 - x) - H(r + Q + 1 - x)] 
^ x=0 

T r+Q 
+ % E x[l - H(r + Q + 1 - x)] 
^ x=r+l 

i[«r. 
Q(Q+i) 
2 ^ + 1  E xH(r + 1 - x) - — 

x=0 

r+Q 
1 E xH(r + 

^x=0 

Q + 1 - x) 

00 00 

= r + + — [ E (r + 1 - w) H(w) + E (v - r - l) H(w) 
w=l w=r+l 
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Z (r + Q + L-w) H(V) - Z ( w - r - Q - L )  H (W)] 
w=l w=r+Q+l 

= r + ̂  + J [ -Q I H(w)] + B(Q,r) . 
^ w=l 

00 00 

Since Z H(w) = Z wh(w) = y, 
w=l v=l 

D(Q,r) = r+-^i- v + B(Q,r) . 
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